

 1 of 51

AS

Computer Science
Paper 1 (7516/1)

Mark scheme: applicable for all programming languages A, B, C, D and E

7516

June 2017

Version 1.0: Final

 2 of 51

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the

relevant questions, by a panel of subject teachers. This mark scheme includes any amendments

made at the standardisation events which all associates participate in and is the scheme which

was used by them in this examination. The standardisation process ensures that the mark scheme

covers the students’ responses to questions and that every associate understands and applies it in

the same correct way. As preparation for standardisation each associate analyses a number of

students’ scripts. Alternative answers not already covered by the mark scheme are discussed and

legislated for. If, after the standardisation process, associates encounter unusual answers which

have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed

and expanded on the basis of students’ reactions to a particular paper. Assumptions about future

mark schemes on the basis of one year’s document should be avoided; whilst the guiding

principles of assessment remain constant, details will change, depending on the content of a

particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

AS Computer Science

Paper 1 (7516/1 – applicable to all programming languages A, B C, D and E)

Copyright © 2017 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any
material that is acknowledged to a third party even for internal use within the centre.

 3 of 51

June 2017

The following annotation is used in the mark scheme:

; - means a single mark

// - means alternative response

/ - means an alternative word or sub-phrase

A - means acceptable creditworthy answer

R - means reject answer as not creditworthy

NE - means not enough

I - means ignore

DPT - means "Don't penalise twice". In some questions a specific error made by a candidate, if

repeated, could result in the loss of more than one mark. The DPT label indicates that

this mistake should only result in a candidate losing one mark, on the first occasion that

the error is made. Provided that the answer remains understandable, subsequent marks

should be awarded as if the error was not being repeated.

Pages # to ## contain the generic mark scheme.

Pages ## to ## contain the program source code specific to the programming languages for

questions ##,## and ##;

 pages ## to ## – VB.NET

 pages ## to ## – PYTHON 2

 pages ## to ## – PYTHON 3

 pages ## to ## – PASCAL/Delphi

 pages ## to ## – C#

 pages ## to ## – JAVA

 4 of 51

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The

descriptor for the level shows the average performance for the level. There are marks in each

level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it

(as instructed) to show the qualities that are being looked for. You can then apply the mark

scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer
meets the descriptor for that level. The descriptor for the level indicates the different qualities that
might be seen in the student’s answer for that level. If it meets the lowest level then go to the next
one and decide if it meets this level, and so on, until you have a match between the level descriptor
and the answer. With practice and familiarity you will find that for better answers you will be able to
quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick
holes in small and specific parts of the answer where the student has not performed quite as well
as the rest. If the answer covers different aspects of different levels of the mark scheme you
should use a best fit approach for defining the level and then use the variability of the response to
help decide the mark within the level, ie if the response is predominantly level 3 with a small
amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the
level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to
allocate marks can help with this. The exemplar materials used during standardisation will help.
There will be an answer in the standardising materials which will correspond with each level of the
mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can
compare the student’s answer with the example to determine if it is the same standard, better or
worse than the example. You can then use this to allocate a mark for the answer based on the
Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify
points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

 5 of 51

Examiners are required to assign each of the candidates’ responses to the most appropriate level
according to its overall quality, then allocate a single mark within the level. When deciding upon

a mark in a level examiners should bear in mind the relative weightings of the assessment

objectives

eg

In question 10.1, the marks available for the AO3 elements are as follows:

AO3 (design) – 3 marks

AO3 (programming) – 6 marks

In question 11.1, the marks available for the AO3 elements are as follows:

AO3 (design) – 3 marks

AO3 (programming) – 9 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can

receive will be restricted accordingly.

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 6 of 51

Qu Marks

01 1 All marks AO2 (apply)

Event Label(s)

Correct code keyed F

Door pulled open B

Door pushed shut A

New code keyed E

Press C d, g (I. order)

Press E h, c (I. order)

1 mark per two correct labels (round down).

I. case

Note: each label must only be used once (if given more than once, reject all

occurrences).

4

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 7 of 51

Qu Marks

02 1 All marks AO2 (apply)

Count HexString Number HexDigit Value Output

1 "A2" 0 "A" 10

 10 "2" 2

 162 162

2 "1G" 0 "1" 1

 1 "G" -1

 15 15

Mark as follows:

1. Count running over the values 1, 2 with correct sequence of values for

HexString ("A2", "1G");

2. The correct sequence of values in Number column (0, 10, 162, 0, 1, 15);

3. The correct sequence of values in HexDigit column ("A", "2", "1", "G");

4. The correct sequence of values in Value column (10, 2, 1, -1);

5. The correct sequence of values in Output column (162, 15);

A. repeating values in first two columns

A. "1G" before "A2"

A. string values without quotes

5

02 2 All marks for AO2 (analyse)

1. invalid character produces value -1 from subroutine;

2. -1 should not be used to calculate // deal with -1 seperately // using -1 gives a

misleading result;

3. final output should be -1 / error message;

MAX 2

2

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 8 of 51

03 1 All marks for AO3 (programming)

Mark as follows:

1. Correct prompts "Enter a whole number: "
"Enter another whole number: "

Number1 and Number2 assigned values entered by user;

R. if inside loop

2. Number1 and Number2 assigned to Temp1 and Temp2 respectively;

3. WHILE loop with syntax allowed by the programming language and correct

condition for termination of the loop;

4. Correct syntax and condition for the IF statement inside attempt at loop

5. Correct contents of THEN and ELSE part

6. Correct output "… is GCF of … and …"

A. Temp1 instead of Result

A. output on more than one line
R. if inside loop
A. variations on prompts

I. minor differences in case and spelling

DPT. If different identifiers

6

03 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 03.1, including prompts on screen capture matching those in

code.

Code for 03.1 must be sensible.

Screen capture(s) showing the requested tests

1

03 3 Mark is for AO2 (analyse)

to preserve the original values for later use // otherwise output won’t make sense;

Note: must refer to the fact that original values are needed later

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 9 of 51

04 1 Mark is for AO1 (understanding)

Frost // Continuing;

R. if any additional code

I. minor differences in case and spelling

R. significant differences in case and spelling

1

04 2 Mark is for AO1 (understanding)

GetHowLongToRun;

R. if any additional code

I. minor differences in case and spelling

R. significant differences in case and spelling

1

04 3 Mark is for AO1 (understanding)

Field;

R. FieldRow

R. if any additional code

I. minor differences in case and spelling

R. significant differences in case and spelling

1

04 4 Mark is for AO1 (understanding)

Response // FileName // FieldRow;

R. if any additional code

I. minor differences in case and spelling

R. significant differences in case and spelling

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 10 of 51

05 1 All marks for AO2 (analyse)

1. (If the specification for the field size changes) only need to change the values at

the beginning of the source code;

2. Makes the simulation/source code more understandable // improves readability of

the code;
A. easier to read

3. Makes clear that the values are the dimensions of the field // Identifiers convey

meaning that the values directly don’t;

A. Can’t change values accidentally;

MAX 2

2

05 2 Mark is for AO2 (analyse)

It checks that the coordinates of the proposed seed position are within the field

boundaries // not outside the bounds of the field;

NE. Validates seed position // stops generating an error

1

05 3 All marks for AO2 (analyse)

1. add another selection construct;

2. for rainfall equal to 1 (or 2);

3. when the plant count is exactly divisible by 4, change plant to soil;

A. any method that guarantees killing of 25% of the plants

R. random killing of plants

A. equivalent code

3

05 4 1 mark for AO1 (knowledge) and 1 mark for AO2 (apply)

Mark as follows:

AO1 (knowledge)

Integer division // Floor division // DIV;

A. Division that always rounds down to the next integer;

NE. division on its own

AO2 (apply)

Row = 10 Column = 17; A. 10, 17 // 17,10

2

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 11 of 51

06 1 Mark is for AO2 (analyse)

InitialiseField;

I. minor differences in case and spelling

R. if any additional code

1

06 2 Mark is for AO2 (analyse)

ReadFile;

A. CreateNewField if not given in 06.3;

I. minor differences in case and spelling

R. if any additional code

1

06 3 Mark is for AO2 (analyse)

CreateNewField;

A. ReadFile if not given in 06.2

I. minor differences in case and spelling

R. if any additional code

1

06 4 All marks for AO1 (understanding)

1. Parameters/variables/values/data/arguments are passed;

2. Values are returned from a subroutine;
 A. reference parameters return updated values in Pascal;

3. Constants are available to all subroutines // A. global variables in Python;

MAX 2

2

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 12 of 51

07 1 All marks for AO2 (analyse)

1. Program will load top-most/first rows read // bottom rows are ignored/not used;

2. Program will load left-most/first columns read // rightmost columns are ignored /

not used;

A. extra data beyond bounds of field are ignored for 2 marks

A. read data from top left corner, ignoring extra data for 2 marks

A. extra data is ignored for 1 mark

2

07 2 All marks for AO1 (understanding)

1. Spring: every seed becomes a plant because there is no frost
 // every location contains "P";
2. Summer: no change because there is no drought;
3. Autumn: no seed can land as there is no soil
 // no seed can land as every location contains "P";
 A. no change because there is nowhere for seed to land;
4. Winter: only soil in the field // field will be empty;

4

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 13 of 51

08 1 1 mark for AO3 (design) and 5 marks for AO3 (programming)

Mark as follows:

AO3 (design) – 1 mark:

1. Identifying that an iterative statement is required to repeatedly input the data and

check that it is valid before returning including a sensible attempt at termination
logic;

A. recursive method instead of iterative statement

AO3 (programming) – 4 marks:

2. 'Invalid input' is displayed for any one invalid input;

R. if always displays error message
3. Function returns value for all valid inputs, and in no other circumstance;

4. test Year is in range -1 to 5; R. if zero excluded

5. test for non-integer input;
A. test for one type of non-integer input (decimal or string)

I. minor differences in case and spelling

5

08 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 08.1, including prompts on screen capture matching those in

code.

Code for 08.1 must be sensible.

Screen capture(s) showing the requested test being performed and showing the

message 'Invalid input' for -2, 6, w, 1.4 but not for 0

A. different error message (or none) if it matches 08.1

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 14 of 51

09 1 All marks for AO3 (programming)

1. show correct formula for calculating percentage;

2. show correct method for rounding result;

 A. if it shows 15% (or 10%)

2

09 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 09.1, including prompts on screen capture matching those in

code.

Code for 09.1 must be sensible.

Screen captures showing the requested test being performed;

The first percentage must be 15%. This will be the only percentage.

If there has been a frost (see example below) it should be 10%

A. 0% if new field created and 09.1 correct

 A. truncated percentage

Welcome to the Plant Growing Simulation

You can step through the simulation a year at a time

or run the simulation for 0 to 5 years

How many years do you want the simulation to run?

Enter a number between 0 and 5, or -1 for stepping mode: 1

Do you want to load a file with seed positions? (Y/N): Y

Enter file name: TestCase.txt

There are 103 plants growing

15 %

There has been a frost

There are 69 plants growing

10 %

Season: spring Year number: 1

......P............................| 0

.....................X.............| 1

...................................| 2

.........P.PP.PXP.PP.PP.PP.........| 3

...................................| 4

.........P.P.............P.........| 5

.........P.........................| 6

.........P.P.PP.PP.PPX.P.P.........| 7

...........P...........P...........| 8

..X................................| 9

.........P.P.........P.P...........| 10

.........P.X.P..PP.P.P...P.........| 11

.........P...P.P.....P.P.....X.....| 12

.........P.P...P.P...P.P...........| 13

.........P.P...P...P...P.P.........| 14

...............PP.PP...............| 15

.........P.P.........P.P...........| 16

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 15 of 51

..........XX........P..............| 17

.........P.............P.P.........| 18

.........................P.........| 19

10 1 3 marks for AO3 (design) and 6 marks for AO3 (programming)

Note that AO3 (design) marks are for selecting appropriate techniques to use to solve

the problem, so should be credited whether the syntax of programming language

statements is correct or not regardless of whether the solution works.

Level Description Mark

Range

3 A line of reasoning has been followed to arrive at a logically

structured working or almost fully working programmed solution.

Code is written to ensure that all field cells are saved correctly.

The formatting of each line has been considered. Appropriate

messages are displayed. A formal interface is used to pass the

Field data into the subroutine.

Most of the appropriate design decisions have been taken.

7-9

2 There is evidence that a line of reasoning has been partially

followed.

SaveToFile subroutine has been created, but it might only

contain code for saving the data without formatting.

There is evidence of some appropriate design work.

4-6

1 An attempt has been made to create SaveToFile and some

appropriate programming statements have been written. There is

insufficient evidence to suggest that a line of reasoning has been

followed or that the solution has been designed. The statements

written may or may not be syntactically correct and the subroutine

will have very little or none of the required functionality. It is

unlikely that any of the key design elements of the task have been

recognised.

1-3

9

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 16 of 51

Marking guidance:

AO3 (design) – 3 points

1. Identify the need for a selection statement to act on user response
2. Identify a method to save each array element
3. Identify a method for required formatting to right-align line numbers

AO3 (programming) – 6 points

4. subroutine header with correct parameter

A. similar identifier to SaveToFile

5. user interaction to allow filename to be entered when save chosen
6. create a text file for writing
7. each array row output on a new line R. if new line as line 0
8. "|" and row number added to end of row

A. without extra space after "|"

9. subroutine call in suitable place(s) in Simulation subroutine:

Either: line above or below “End of Simulation”

Or: after FOR loop and after or within WHILE loop

Refer answers using nested procedures to Team Leaders

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 17 of 51

10 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 10.1, including prompts on screen capture matching those in

code.

Code for 10.1 must be sensible.

All screen captures must be present for mark to be awarded

Screen captures showing the requested test being performed;

screen capture must show prompt to save and prompt for file name

Season: winter Year number: 2

...................................| 0

...................................| 1

...................................| 2

...................................| 3

...................................| 4

...................................| 5

...................................| 6

...................................| 7

...............SSSS................| 8

...............S..SS...............| 9

...............S.S.S...............| 10

...............SS..S...............| 11

................SSSS...............| 12

...................................| 13

...................................| 14

...................................| 15

...................................| 16

...................................| 17

...................................| 18

...................................| 19

End of Simulation

Save the current Field state to a text file? (Y/N): Y

Enter the chosen filename to save your field data: Test1.txt

A. different filename

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 18 of 51

10 3 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match screen capture from 10.2 (allow for a frost)

All screen captures must be present for mark to be awarded

Screen captures showing the requested test being performed;

Welcome to the Plant Growing Simulation

You can step through the simulation a year at a time

or run the simulation for 0 to 5 years

How many years do you want the simulation to run?

Enter a number between 0 and 5, or -1 for stepping mode: 1

Do you want to load a file with seed positions? (Y/N): Y

Enter file name: Test1.txt

There are 17 plants growing

There has been a frost

There are 12 plants growing

Season: spring Year number: 1

...................................| 0

...................................| 1

...................................| 2

...................................| 3

...................................| 4

...................................| 5

...................................| 6

...................................| 7

...............PP.P................| 8

...............P...P...............| 9

...............P...P...............| 10

...............P...P...............| 11

................P.PP...............| 12

...................................| 13

...................................| 14

...................................| 15

...................................| 16

...................................| 17

...................................| 18

...................................| 19

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 19 of 51

if no frost:

...................................| 0

...................................| 1

...................................| 2

...................................| 3

...................................| 4

...................................| 5

...................................| 6

...................................| 7

...............PPPP................| 8

...............P..PP...............| 9

...............P.P.P...............| 10

...............PP..P...............| 11

................PPPP...............| 12

...................................| 13

...................................| 14

...................................| 15

...................................| 16

...................................| 17

...................................| 18

...................................| 19

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 20 of 51

11 1 3 marks for AO3 (design) and 9 marks for AO3 (programming)

Note that AO3 (design) marks are for selecting appropriate techniques to use to solve

the problem, so should be credited whether the syntax of programming lanuage

statements is correct or not regardless of whether the solution works.

Level Description Mark

Range

3 A line of reasoning has been followed to arrive at a logically

structured working or almost fully working programmed solution

that is efficient.

Code is written to ensure that all possible wind directions result in

the displacement of the seeds. The Field cells are updated

(mostly) correctly. The ‘no wind’ option has been considered.

Appropriate messages are displayed.

All of the appropriate design decisions have been taken.

9-12

2 There is evidence that a line of reasoning has been partially

followed.

SimulateAutumn has been adapted, but it might only contain

code for some of the wind directions and displacements have not

been used correctly with SeedLands.

There is evidence of some appropriate design work.

5-8

1 An attempt has been made to alter SimulateAutumn and some

appropriate programming statements have been written. There is

insufficient evidence to suggest that a line of reasoning has been

followed or that the solution has been designed. The statements

written may or may not be syntactically correct and the subroutine

will have very little or none of the required functionality. It is

unlikely that any of the key design elements of the task have been

recognised.

1-4

Marking guidance:

12

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 21 of 51

AO3 (design) – 3 points

1. identifying a method to associate each different random value with a different wind

direction, including 'no wind'
2. identifying that a displacement needs to be added to row and/or column
3. identifying a method of solution that does not increase the number of calls to

SeedLands and deals with more than one wind direction

AO3 (programming) – 9 points

4. setting up random number generator correctly generating 9 different values
5. displaying a message about wind in a sensible place in the code
6. correctly displays wind direction associated with the generated random number
7. correctly displaying alternative message when there was no wind
8. adjusting column correctly for east/west wind and leaving row unchanged
9. adjusting row correctly for north/south wind and leaving column unchanged
10. adjusting row and column correctly for one of NW / NE / SW / SE winds
11. adjusting row and column correctly for 2 or 3 of NW / NE / SW / SE winds
12. adjusting row and column correctly for all of NW / NE / SW / SE winds

DPT. If direction of wind is interpreted as blowing towards instead of coming from

None N S E W NW SW NE SE

0 0 1 0 -1 0 0 -1 0 1 1 1 -1 1 1 -1 -1 -1

-1 -1 0 -1 -2 -1 -1 -2 -1 0 0 0 -2 0 0 -2 -2 -2

-1 0 0 0 -2 0 -1 -1 -1 +1 0 +1 -2 +1 0 -1 -2 -1

-1 +1 0 +1 -2 +1 -1 0 -1 +2 0 +2 -2 +2 0 0 -2 0

0 -1 +1 -1 -1 -1 0 -2 0 0 +1 0 -1 0 +1 -2 -1 -2

0 +1 +1 +1 -1 +1 0 0 0 +2 +1 +2 -1 +2 +1 0 -1 0

+1 -1 +2 -1 0 -1 +1 -2 +1 0 +2 0 0 0 +2 -2 0 -2

+1 0 +2 0 0 0 +1 -1 +1 +1 +2 +1 0 +1 +2 -1 0 -1

+1 +1 +2 +1 0 +1 +1 0 +1 +2 +2 +2 0 +2 +2 0 0 0

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 22 of 51

11 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 11.1, including prompts on screen capture matching those in

code.

Code for 11.1 must be sensible.

Screen captures showing the requested test being performed;

Two autumns need to be shown

The screenshots should show the seeds relative to the plant as shown in the following

(name of prevailing wind should match the displaced Seed positions relative to the

Plant)

Prevailing wind: No wind

Season: autumn Year number: 1

...................................| 0

...................................| 1

...................................| 2

...................................| 3

...................................| 4

...................................| 5

...................................| 6

...................................| 7

...................................| 8

.................SSS...............| 9

.................SPS...............| 10

.................SSS...............| 11

...................................| 12

...................................| 13

...................................| 14

...................................| 15

...................................| 16

...................................| 17

...................................| 18

...................................| 19

Prevailing wind: North

Season: autumn Year number: 1

...................................| 6

...................................| 7

...................................| 8

...................................| 9

.................SPS...............| 10

.................S.S...............| 11

.................SSS...............| 12

...................................| 13

...................................| 14

1

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 23 of 51

Prevailing wind: South

Season: autumn Year number: 1

...................................| 6

...................................| 7

.................SSS...............| 8

.................S.S...............| 9

.................SPS...............| 10

...................................| 11

...................................| 12

...................................| 13

...................................| 14

Prevailing wind: East

Season: autumn Year number: 1

...................................| 6

...................................| 7

...................................| 8

................SSS................| 9

................S.P................| 10

................SSS................| 11

...................................| 12

...................................| 13

...................................| 14

Prevailing wind: West

Season: autumn Year number: 1

...................................| 6

...................................| 7

...................................| 8

................. SSS..............| 9

..................P.S..............| 10

..................SSS..............| 11

...................................| 12

...................................| 13

...................................| 14

Prevailing wind: NorthWest

Season: autumn Year number: 1

...................................| 6

...................................| 7

...................................| 8

...................................| 9

..................PSS..............| 10

..................S.S..............| 11

..................SSS..............| 12

...................................| 13

...................................| 14

Prevailing wind: Southwest

Season: autumn Year number: 1

...................................| 6

...................................| 7

MARK SCHEME – AS COMPUTER SCIENCE PAPER 1 – 7516/1 – JUNE 2017

 24 of 51

..................SSS..............| 8

..................S.S..............| 9

..................PSS..............| 10

...................................| 11

...................................| 12

...................................| 13

...................................| 14

Prevailing wind: Northeast

Season: autumn Year number: 1

...................................| 6

...................................| 7

...................................| 8

...................................| 9

................SSP................| 10

................S.S................| 11

................SSS................| 12

...................................| 13

...................................| 14

Prevailing wind: Southeast

Season: autumn Year number: 1

...................................| 6

...................................| 7

................SSS................| 8

................S.S................| 9

................SSP................| 10

...................................| 11

...................................| 12

...................................| 13

...................................| 14

 25 of 51

Python 2

03 1 Number1 = int(raw_input("Enter a whole number: "))

Number2 = int(raw_input("Enter another whole number: "))

Temp1 = Number1

Temp2 = Number2

while Temp1 != Temp2:

 if Temp1 > Temp2:

 Temp1 = Temp1 - Temp2

 else:

 Temp2 = Temp2 - Temp1

Result = Temp1

print Result, " is GCF of ", Number1, " and ", Number2

6

08 1 def GetHowLongToRun():

 print "Welcome to the Plant Growing Simulation"

 print

 print "You can step through the simulation a year at a

time"

 print "or run the simulation for 0 to 5 years"

 print "How many years do you want the simulation to

run?"

 Valid = False

 while not Valid:

 try: # catch non-integer input

 Years = int(raw_input("Enter a number between 0

and 5, or -1 for stepping mode: "))

 if Years >= -1 and Years <= 5:

 Valid = True

 except:

 pass

 if not Valid:

 print "Invalid input"

 return Years

5

09 1 def CountPlants(Field):

 NumberOfPlants = 0

 for Row in range(FIELDLENGTH):

 for Column in range(FIELDWIDTH):

 if Field[Row][Column] == PLANT:

 NumberOfPlants += 1

 if NumberOfPlants == 1:

 print "There is 1 plant growing"

 else:

 print "There are", NumberOfPlants, "plants growing"

 TotalCells = FIELDWIDTH * FIELDLENGTH

 Percentage = int(round((NumberOfPlants * 100.0) /

TotalCells))

 print Percentage , "%"

2

 26 of 51

10 1 def SaveToFile(Field):

 Response = raw_input('Save the current Field state to

a text file? (Y/N): ')

 if Response == 'Y':

 FileName = raw_input('Enter the chosen filename to

save your field data: ')

 FileHandle = open(FileName, 'w')

 for Row in range(FIELDLENGTH):

 for Column in range(FIELDWIDTH):

 FileHandle.write(Field[Row][Column])

 FileHandle.write('|{0:>3}'.format(Row))

 FileHandle.write('\n')

 FileHandle.close()

def Simulation():

 YearsToRun = GetHowLongToRun()

 if YearsToRun != 0:

 Field = InitialiseField()

 if YearsToRun >= 1:

 for Year in range(1, YearsToRun + 1):

 SimulateOneYear(Field, Year)

 else:

 Continuing = True

 Year = 0

 while Continuing:

 Year += 1

 SimulateOneYear(Field, Year)

 Response = raw_input("Press Enter to run

simulation for another Year, Input X to stop: ")

 if Response == "x" or Response == "X":

 Continuing = False

 print "End of Simulation"

 SaveToFile(Field)

 raw_input()

9

11 1 def SimulateAutumn(Field):

 Direction = ['None', 'East', 'West', 'North', 'South',

 'Southeast','Northeast','Southwest','Northwest']

 PrevailingWind = randint(0,8)

 WindDirection = Direction[PrevailingWind]

 ColumnDisplacement = 0

 RowDisplacement = 0

 if WindDirection == 'East':

 ColumnDisplacement = -1

 elif WindDirection == 'West':

 ColumnDisplacement = 1

 elif WindDirection == 'North':

12

 27 of 51

 RowDisplacement = 1

 elif WindDirection == 'South':

 RowDisplacement = -1

 elif WindDirection == 'Southeast':

 RowDisplacement = -1

 ColumnDisplacement = -1

 elif WindDirection == 'Northeast':

 RowDisplacement = 1

 ColumnDisplacement = -1

 elif WindDirection == 'Southwest':

 RowDisplacement = -1

 ColumnDisplacement = 1

 elif WindDirection == 'Northwest':

 RowDisplacement = 1

 ColumnDisplacement = 1

 if PrevailingWind == 0:

 print 'There was no wind this season'

 else:

 print 'Prevailing wind: ', WindDirection

 for Row in range(FIELDLENGTH):

 for Column in range(FIELDWIDTH):

 if Field[Row][Column] == PLANT:

 Row = Row + RowDisplacement

 Column = Column + ColumnDisplacement

 Field = SeedLands(Field, Row - 1, Column - 1)

 Field = SeedLands(Field, Row - 1, Column)

 Field = SeedLands(Field, Row - 1, Column + 1)

 Field = SeedLands(Field, Row, Column - 1)

 Field = SeedLands(Field, Row, Column + 1)

 Field = SeedLands(Field, Row + 1, Column - 1)

 Field = SeedLands(Field, Row + 1, Column)

 Field = SeedLands(Field, Row + 1, Column + 1)

 return Field

 28 of 51

Python 3

03 1 Number1 = int(input("Enter a whole number: "))

Number2 = int(input("Enter another whole number: "))

Temp1 = Number1

Temp2 = Number2

while Temp1 != Temp2:

 if Temp1 > Temp2:

 Temp1 = Temp1 - Temp2

 else:

 Temp2 = Temp2 - Temp1

Result = Temp1

print(Result, " is GCF of ", Number1, " and ", Number2)

6

08 1 def GetHowLongToRun():

 print('Welcome to the Plant Growing Simulation')

 print()

 print('You can step through the simulation a year at a

time')

 print('or run the simulation for 0 to 5 years')

 print('How many years do you want the simulation to

run?')

 Valid = False

 while not Valid:

 try: # catch non-integer input

 Years = int(input('Enter a number between 0 and 5,

or -1 for stepping mode: '))

 if Years >= -1 and Years <= 5:

 Valid = True

 except:

 pass

 if not Valid:

 print('Invalid input')

 return Years

5

09 1 def CountPlants(Field):

 NumberOfPlants = 0

 for Row in range(FIELDLENGTH):

 for Column in range(FIELDWIDTH):

 if Field[Row][Column] == PLANT:

 NumberOfPlants += 1

 if NumberOfPlants == 1:

 print('There is 1 plant growing')

 else:

 print('There are', NumberOfPlants, 'plants growing')

 TotalCells = FIELDWIDTH * FIELDLENGTH

 Percentage = round((NumberOfPlants / TotalCells)* 100)

 print(Percentage, '%')

2

 29 of 51

10 1 def SaveToFile(Field):

 Response = input('Save the current Field state to a

text file? (Y/N): ')

 if Response == 'Y':

 FileName = input('Enter the chosen filename to save

your field data: ')

 FileHandle = open(FileName, 'w')

 for Row in range(FIELDLENGTH):

 for Column in range(FIELDWIDTH):

 FileHandle.write(Field[Row][Column])

 FileHandle.write('|{0:>3}'.format(Row))

 FileHandle.write('\n')

 FileHandle.close()

def Simulation():

 YearsToRun = GetHowLongToRun()

 if YearsToRun != 0:

 Field = InitialiseField()

 if YearsToRun >= 1:

 for Year in range(1, YearsToRun + 1):

 SimulateOneYear(Field, Year)

 else:

 Continuing = True

 Year = 0

 while Continuing:

 Year += 1

 SimulateOneYear(Field, Year)

 Response = input('Press Enter to run simulation

for another Year, Input X to stop: ')

 if Response == 'x' or Response == 'X':

 Continuing = False

 print('End of Simulation')

 SaveToFile(Field)

 input()

9

 30 of 51

11 1 def SimulateAutumn(Field):

 Direction = ['None', 'East', 'West', 'North', 'South',

 'Southeast','Northeast','Southwest','Northwest']

 PrevailingWind = randint(0,8)

 WindDirection = Direction[PrevailingWind]

 ColumnDisplacement = 0

 RowDisplacement = 0

 if WindDirection == 'East':

 ColumnDisplacement = -1

 elif WindDirection == 'West':

 ColumnDisplacement = 1

 elif WindDirection == 'North':

 RowDisplacement = 1

 elif WindDirection == 'South':

 RowDisplacement = -1

 elif WindDirection == 'Southeast':

 RowDisplacement = -1

 ColumnDisplacement = -1

 elif WindDirection == 'Northeast':

 RowDisplacement = 1

 ColumnDisplacement = -1

 elif WindDirection == 'Southwest':

 RowDisplacement = -1

 ColumnDisplacement = 1

 elif WindDirection == 'Northwest':

 RowDisplacement = 1

 ColumnDisplacement = 1

 if PrevailingWind == 0:

 print('There was no wind this season')

 else:

 print('Prevailing wind: ', WindDirection)

 for Row in range(FIELDLENGTH):

 for Column in range(FIELDWIDTH):

 if Field[Row][Column] == PLANT:

 Row = Row + RowDisplacement

 Column = Column + ColumnDisplacement

 Field = SeedLands(Field, Row - 1, Column - 1)

 Field = SeedLands(Field, Row - 1, Column)

 Field = SeedLands(Field, Row - 1, Column + 1)

 Field = SeedLands(Field, Row, Column - 1)

 Field = SeedLands(Field, Row, Column + 1)

 Field = SeedLands(Field, Row + 1, Column - 1)

 Field = SeedLands(Field, Row + 1, Column)

 Field = SeedLands(Field, Row + 1, Column + 1)

 return Field

12

 31 of 51

Alternative answer
def SimulateAutumn(Field):

 Direction = ['None', 'East', 'West', 'North', 'South',

 'Southeast','Northeast','Southwest','Northwest']

 PrevailingWind = randint(0,8)

 WindDirection = Direction[PrevailingWind]

 ColumnDisplacement = 0

 RowDisplacement = 0

 if WindDirection == 'East':

 ColumnDisplacement = -1

 elif WindDirection == 'West':

 ColumnDisplacement = 1

 elif WindDirection == 'North':

 RowDisplacement = 1

 elif WindDirection == 'South':

 RowDisplacement = -1

 elif WindDirection == 'Southeast':

 RowDisplacement = -1

 ColumnDisplacement = -1

 elif WindDirection == 'Northeast':

 RowDisplacement = 1

 ColumnDisplacement = -1

 elif WindDirection == 'Southwest':

 RowDisplacement = -1

 ColumnDisplacement = 1

 elif WindDirection == 'Northwest':

 RowDisplacement = 1

 ColumnDisplacement = 1

 if PrevailingWind == 0:

 print('There was no wind this season')

 else:

 print('Prevailing wind: ', WindDirection)

 for Row in range(FIELDLENGTH):

 for Column in range(FIELDWIDTH):

 if Field[Row][Column] == PLANT:

 Field = SeedLands(Field, Row - 1 +

RowDisplacement, Column - 1 + ColumnDisplacement)

 Field = SeedLands(Field, Row - 1 +

RowDisplacement, Column + ColumnDisplacement)

 Field = SeedLands(Field, Row - 1 +

RowDisplacement, Column + 1 + ColumnDisplacement)

 Field = SeedLands(Field, Row + RowDisplacement,

Column - 1 + ColumnDisplacement)

 Field = SeedLands(Field, Row + RowDisplacement,

Column + 1 + ColumnDisplacement)

 Field = SeedLands(Field, Row + 1 +

RowDisplacement, Column - 1 + ColumnDisplacement)

 32 of 51

 Field = SeedLands(Field, Row + 1 +

RowDisplacement, Column + ColumnDisplacement)

 Field = SeedLands(Field, Row + 1 +

RowDisplacement, Column + 1 + ColumnDisplacement)

 return Field

 33 of 51

VB.NET

03 1 Sub Main()

 Dim Number1 As Integer
 Dim Number2 As Integer
 Dim Temp1 As Integer
 Dim Temp2 As Integer
 Dim Result As Integer
 Console.Write("Enter a whole number: ")
 Number1 = Console.ReadLine
 Console.Write("Enter another whole number: ")
 Number2 = Console.ReadLine
 Temp1 = Number1
 Temp2 = Number2
 While Temp1 <> Temp2
 If Temp1 > Temp2 Then
 Temp1 = Temp1 - Temp2
 Else
 Temp2 = Temp2 - Temp1
 End If
 End While
 Result = Temp1
 Console.WriteLine(Result & " is GCF of " & Number1 & " and " &

Number2)
 Console.ReadLine()
End Sub

6

08 1 ...

Console.WriteLine("How many years do you want the simulation to

run?")

Dim Valid As Boolean = False

While Not Valid

 Try
 Console.Write("Enter a number between 0 and 5, or -1 for

stepping mode: ")
 Years = Convert.ToInt32(Console.ReadLine());
 If Years >= -1 And Years <= 5 Then
 Valid = True
 End If
 Catch
 End Try
 If Not Valid Then
 Console.WriteLine("Invalid input")
 End If
End While

Return Years

...

Alternative answer

...

Console.WriteLine("How many years do you want the simulation to

run?")

While True

 Try
 Console.Write("Enter a number between 0 and 5, or -1 for

stepping: ")
 Years = Convert.ToInt32(Console.ReadLine());

5

 34 of 51

 If Years >= -1 And Years <= 5 Then
 Exit While
 End If
 Catch
 End Try
 Console.WriteLine("Invalid input")
End While

Return Years

...

09 1 ...

 Console.WriteLine("There are " & NumberOfPlants & " plants

growing")
End If

Dim TotalCells As Integer

Dim Percentage As Integer

TotalCells = FIELDWIDTH * FIELDLENGTH

Percentage = Math.Round((NumberOfPlants / TotalCells) * 100)

Console.WriteLine(Percentage & "%")

...

Alternative answer

...

 Console.WriteLine("There are " & NumberOfPlants & " plants

growing")
End If

Console.WriteLine(Math.Round((NumberOfPlants / (FIELDWIDTH *

FIELDLENGTH)) * 100) & "%")

...

2

10 1 Sub SaveToFile(ByVal Field(,) As Char)

 Dim Response As String
 Dim Row As Integer
 Dim Column As Integer
 Dim FileName As String
 Dim FileHandle As IO.StreamWriter
 Console.Write("Save the current Field state to a text file? (Y/N):

")
 Response = Console.ReadLine()
 If Response = "Y" Then
 Console.Write("Enter the chosen filename to save your field

data: ")
 FileName = Console.ReadLine()
 FileHandle = New IO.StreamWriter(FileName)
 For Row = 0 To FIELDLENGTH - 1
 For Column = 0 To FIELDWIDTH - 1
 FileHandle.write(Field(Row, Column))
 Next
 FileHandle.Write("|" & Str(Row).PadLeft(3) & vbCrLf)
 Next
 FileHandle.close()
 End If

End Sub

Sub Simulation()

9

 35 of 51

 Dim YearsToRun As Integer
 Dim Continuing As Boolean
 Dim Response As String
 Dim Year As Integer
 Dim Field(FIELDWIDTH, FIELDLENGTH) As Char
 While True
 YearsToRun = GetHowLongToRun()
 If YearsToRun <> 0 Then
 Field = InitialiseField()
 If YearsToRun >= 1 Then
 For Year = 1 To YearsToRun
 SimulateOneYear(Field, Year)
 Next
 Else
 Continuing = True
 Year = 0
 While Continuing
 Year += 1
 SimulateOneYear(Field, Year)
 Console.Write("Press Enter to run simulation for another

Year, Input X to stop: ")
 Response = Console.ReadLine()
 If Response = "x" Or Response = "X" Then
 Continuing = False
 End If
 End While
 End If
 Console.WriteLine("End of Simulation")
 SaveToFile(Field)
 End If
 Console.ReadLine()
 End While

End Sub

11 1 Function SimulateAutumn(ByVal Field(,) As Char) As Char(,)

 Dim RowDisplacement As Integer
 Dim ColumnDisplacement As Integer
 Dim PrevailingWind As Integer
 Dim WindDirection As String
 Dim Direction() As String = {"None", "East", "West", "North",

"South", "Southeast", "Northeast", "Southwest", "Northwest"}
 PrevailingWind = Int(Rnd() * 10)
 WindDirection = Direction(PrevailingWind)
 ColumnDisplacement = 0
 RowDisplacement = 0
 If WindDirection = "East" Then
 ColumnDisplacement = -1
 ElseIf WindDirection = "West" Then
 ColumnDisplacement = 1
 ElseIf WindDirection = "North" Then
 RowDisplacement = 1
 ElseIf WindDirection = "South" Then
 RowDisplacement = -1
 ElseIf WindDirection = "Southeast" Then
 RowDisplacement = -1
 ColumnDisplacement = -1
 ElseIf WindDirection = "Northeast" Then
 RowDisplacement = 1

12

 36 of 51

 ColumnDisplacement = -1
 ElseIf WindDirection = "Southwest" Then
 RowDisplacement = -1
 ColumnDisplacement = 1
 ElseIf WindDirection = "Northwest" Then
 RowDisplacement = 1
 ColumnDisplacement = 1
 End If
 If PrevailingWind = 0 Then
 Console.WriteLine("There was no wind this season")
 Else
 Console.WriteLine("Prevailing wind: " & WindDirection)
 End If
 For Row = 0 To FIELDLENGTH - 1
 For Column = 0 To FIELDWIDTH - 1
 If Field(Row, Column) = Plant Then
 Field = SeedLands(Field, Row + RowDisplacement - 1, Column +

ColumnDisplacement - 1)
 Field = SeedLands(Field, Row + RowDisplacement - 1, Column +

ColumnDisplacement)
 Field = SeedLands(Field, Row + RowDisplacement - 1, Column +

ColumnDisplacement + 1)
 Field = SeedLands(Field, Row + RowDisplacement, Column +

ColumnDisplacement - 1)
 Field = SeedLands(Field, Row + RowDisplacement, Column +

ColumnDisplacement + 1)
 Field = SeedLands(Field, Row + RowDisplacement + 1, Column +

ColumnDisplacement - 1)
 Field = SeedLands(Field, Row + RowDisplacement + 1, Column +

ColumnDisplacement)
 Field = SeedLands(Field, Row + RowDisplacement + 1, Column +

ColumnDisplacement + 1)
 End If
 Next
 Next
 Return Field
End Function

 37 of 51

Pascal

03 1 program Project2;

{$APPTYPE CONSOLE}

uses

 SysUtils;

var

 Number1, Number2 : Integer;

 Temp1, Temp2 : Integer;

 Result : Integer;

begin

 Write('Enter a whole number: ');

 Readln(Number1);

 Write('Enter another whole number: ');

 Readln(Number2);

 Temp1 := Number1;

 Temp2 := Number2;

 while Temp1 <> Temp2 do

 if Temp1 > Temp2 then

 Temp1 := Temp1 - Temp2

 else

 Temp2 := Temp2 - Temp1;

 Result := Temp1;

 Write(Result, ' is GCF of ', Number1, ' and ', Number2);

 Readln;

end.

6

08 1 Function GetHowLongToRun() : Integer;

Var

 Valid : Boolean;

 Years : Integer;

Begin

 Writeln('Welcome to the Plant Growing Simulation');

 Writeln;

 Writeln('You can step through the simulation a year at a

time');

 Writeln('or run the simulation for 0 to 5 years');

 Writeln('How many years do you want the simulation to

run?');
 Valid := False;

 While Not Valid Do

 Begin

 Try

 Write('Enter a number between 0 and 5, or -1 for

stepping mode: ');

 Readln(Years);
 If (Years >= -1) And (Years <= 5) Then

 Valid := True;

 Except

5

 38 of 51

 End;

 If Not Valid Then

 Writeln('Invalid input');

 End;

 GetHowLongToRun := Years;

End;

09 1 Procedure CountPlants(Field : TField);

Var

 TotalCells, Percentage : Integer;

 NumberOfPlants : Integer;

 Row, Column : Integer;

Begin

 NumberOfPlants := 0;

 For Row := 0 To FIELDLENGTH - 1 Do

 For Column := 0 To FIELDWIDTH - 1 Do

 If Field[Row][Column] = PLANT Then

 NumberOfPlants := NumberOfPlants + 1;

 If NumberOfPlants = 1 Then

 Writeln('There is 1 plant growing')

 Else

 Writeln('There are ', NumberOfPlants, ' plants growing');
 TotalCells := FIELDWIDTH * FIELDLENGTH;

 Percentage := Round((NumberOfPlants / TotalCells) * 100);

 Writeln(Percentage, '%');

End;

2

10 1 Procedure SaveToFile(Field : TField);

Var

 Response : Char;

 Row, Column : Integer;

 FileName : String;

 FileHandle : Text;

Begin

 Write('Save the current Field state to a text file? (Y/N):

');

 Readln(Response);

 If Response = 'Y' Then

 Begin

 Write('Enter the chosen filename to save your field data:

');

 Readln(FileName);

 AssignFile(FileHandle, FileName);

 ReWrite(FileHandle);

 For Row := 0 To FIELDLENGTH - 1 Do

 Begin

 For Column := 0 To FIELDWIDTH - 1 Do

 Write(FileHandle, Field[Row][Column]);

 Writeln(FileHandle, '|', Row:3);

 End;

 CloseFile(FileHandle);

9

 39 of 51

 End;

End;

Procedure Simulation();

Var

 YearsToRun, Year : Integer;

 Field : TField;

 Continuing : Boolean;

 Response : String;

Begin

 YearsToRun := GetHowLongToRun();

 If YearsToRun <> 0 Then

 Begin

 Field := InitialiseField();

 If YearsToRun >= 1 Then

 For Year := 1 To YearsToRun Do

 SimulateOneYear(Field, Year)

 Else

 Begin

 Continuing := True;

 Year := 0;

 While Continuing = True Do

 Begin

 Year := Year + 1;

 SimulateOneYear(Field, Year);

 Write('Press Enter to run simulation for another

Year, Input X to stop: ');

 Readln(Response);

 If (Response = 'x') Or (Response = 'X') Then

 Continuing := False;

 End;

 End;

 Writeln('End of Simulation');
 SaveToFile(Field);

 End;

 Readln;

End;

11 1 Function SimulateAutumn(Field : TField) : TField;

Var

 PrevailingWind, ColumnDisplacement, RowDisplacement, Row,

Column : Integer;
 WindDirection : String;
 Direction : Array [0..8] Of String;
Begin

 Direction[0] := 'None';
 Direction[1] := 'East';
 Direction[2] := 'West';
 Direction[3] := 'North';
 Direction[4] := 'South';
 Direction[5] := 'Southeast';
 Direction[6] := 'Northeast';

12

 40 of 51

 Direction[7] := 'Southwest';
 Direction[8] := 'Northwest';
 PrevailingWind := Random(9);
 WindDirection := Direction[PrevailingWind];
 ColumnDisplacement := 0;
 RowDisplacement := 0;
 Case PrevailingWind of
 1 : ColumnDisplacement := -1;
 2 : ColumnDisplacement := 1;
 3 : RowDisplacement := 1;
 4 : RowDisplacement := -1;
 5 : Begin
 RowDisplacement := -1;
 ColumnDisplacement := -1;
 End;
 6 : Begin
 RowDisplacement := 1;
 ColumnDisplacement := -1;
 End;
 7 : Begin
 RowDisplacement := -1;
 ColumnDisplacement := 1;
 End;
 8 : Begin
 RowDisplacement := 1;
 ColumnDisplacement := 1;
 End;
 End;
 If PrevailingWind = 0 Then
 Writeln('There was no wind this season')
 Else
 Writeln('Prevailing wind: ', WindDirection);

 For Row := 0 To FIELDLENGTH - 1 Do
 For Column := 0 To FIELDWIDTH - 1 Do
 If Field[Row][Column] = PLANT Then
 Begin
 Field := SeedLands(Field, Row + RowDisplacement - 1,

Column + ColumnDisplacement - 1);
 Field := SeedLands(Field, Row + RowDisplacement - 1,

Column + ColumnDisplacement);
 Field := SeedLands(Field, Row + RowDisplacement - 1,

Column + ColumnDisplacement + 1);
 Field := SeedLands(Field, Row + RowDisplacement,

Column + ColumnDisplacement - 1);
 Field := SeedLands(Field, Row + RowDisplacement,

Column + ColumnDisplacement + 1);
 Field := SeedLands(Field, Row + RowDisplacement + 1,

Column + ColumnDisplacement - 1);
 Field := SeedLands(Field, Row + RowDisplacement + 1,

Column + ColumnDisplacement);
 Field := SeedLands(Field, Row + RowDisplacement + 1,

Column + ColumnDisplacement + 1);

 41 of 51

 End;
 SimulateAutumn := Field;
End;

 42 of 51

C#

03 1 static void Main(string[] args)

{

 int Number1 = 0, Number2 = 0;

 int Temp1 = 0, Temp2 = 0;

 int Result = 0;

 Console.Write("Enter a whole number: ");

 Number1 = Convert.ToInt32(Console.ReadLine());

 Console.Write("Enter another whole number: ");

 Number2 = Convert.ToInt32(Console.ReadLine());

 Temp1 = Number1;

 Temp2 = Number2;

 while (Temp1 != Temp2)

 {

 if (Temp1 > Temp2)

 {

 Temp1 = Temp1 - Temp2;

 }

 else

 {

 Temp2 = Temp2 - Temp1;

 }

 }

 Result = Temp1;

 Console.WriteLine(Result + " is GCF of " + Number1 + " and

" + Number2);

 Console.ReadLine();

}

6

08 1 static int GetHowLongToRun()

{

 int Years = 0;
 bool Valid = false;

 Console.WriteLine("Welcome to the Plant Growing

Simulation");

 Console.WriteLine();

 Console.WriteLine("You can step through the simulation a

year at a time");

 Console.WriteLine("or run the simulation for 0 to 5

years");

 Console.WriteLine("How many years do you want the

simulation to run?");

 Console.Write("Enter a number between 0 and 5, or -1 for

stepping mode: ");
 while (!Valid)

 {

 try

 {

 Years = Convert.ToInt32(Console.ReadLine());

5

 43 of 51

 if (Years >= -1 && Years <= 5)

 {

 Valid = true;

 }

 }

 catch (Exception)

 {

 }

 if (!Valid)

 {

 Console.WriteLine("Invalid input");

 }

 }

 return Years;

}

09 1 static void CountPlants(char[,] Field)

{

 int NumberOfPlants = 0;
 int TotalCells = 0;

 double Percentage = 0;

 for (int Row = 0; Row < FIELDLENGTH; Row++)

 {

 for (int Column = 0; Column < FIELDWIDTH; Column++)

 {

 if (Field[Row, Column] == PLANT)

 {

 NumberOfPlants++;

 }

 }

 }

 if (NumberOfPlants == 1)

 {

 Console.WriteLine("There is 1 plant growing");

 }

 else

 {

 Console.WriteLine("There are " + NumberOfPlants + "

plants growing");

 }
 TotalCells = FIELDLENGTH * FIELDWIDTH;

 Percentage = (((double)NumberOfPlants / (double)TotalCells)

* 100.0);

 Console.WriteLine(Math.Round(Percentage) + "%");

}

2

10 1 private static void SaveToFile(char[,] Field)

{

 string Response = "", FileName = "";

 Console.Write("Save the current Field state to a text file?

(Y/N):");

9

 44 of 51

 Response = Console.ReadLine();

 if (Response == "Y")

 {

 Console.Write("Enter the File Name ");

 FileName = Console.ReadLine();

 StreamWriter CurrentFile = new StreamWriter(FileName);

 for (int Row = 0; Row < FIELDLENGTH; Row++)

 {

 for (int Column = 0; Column < FIELDWIDTH; Column++)

 {

 CurrentFile.Write(Field[Row, Column]);

 }

 CurrentFile.WriteLine("| " + String.Format("{0,3}",

Row));

 }

 CurrentFile.Close();

 }

}

static void Simulation()

{

 int YearsToRun;

 char[,] Field = new char[FIELDLENGTH, FIELDWIDTH];

 bool Continuing;

 int Year;

 string Response;

 YearsToRun = GetHowLongToRun();

 if (YearsToRun != 0)

 {

 InitialiseField(ref Field);

 if (YearsToRun >= 1)

 {

 for (Year = 1; Year <= YearsToRun + 1; Year++)

 {

 SimulateOneYear(Field, Year);

 }

 }

 else

 {

 Continuing = true;

 Year = 0;

 while (Continuing)

 {

 Year++;

 SimulateOneYear(Field, Year);

 Console.Write("Press Enter to run simulation for

another Year, Input X to stop: ");

 Response = Console.ReadLine();

 if (Response == "x" || Response == "X")

 {

 Continuing = false;

 45 of 51

 }

 }

 }

 Console.WriteLine("End of Simulation");
 SaveToFile(Field);

 }

 Console.ReadLine();

}

11 1 static void SimulateAutumn(char[,] Field)

{

 string[] Direction = new string[] {"None", "East", "West",

"North",

"South","Southeast","Northeast","Southwest","Northwest"};
 Random RNDWindDirection = new Random();
 int PrevailingWind = RNDWindDirection.Next(0, 9);
 string WindDirection = Direction[PrevailingWind];
 int ColumnDisplacement = 0, RowDisplacement = 0;
 if (WindDirection == "East")
 {
 ColumnDisplacement = -1;
 }
 else if(WindDirection == "West")
 {
 ColumnDisplacement = 1;
 }
 else if (WindDirection == "North")
 {
 RowDisplacement = 1;
 }
 else if (WindDirection == "South")
 {
 RowDisplacement = -1;
 }
 else if (WindDirection == "Southeast")
 {
 RowDisplacement = -1;
 ColumnDisplacement = -1;
 }
 else if (WindDirection == "Northeast")
 {
 RowDisplacement = 1;
 ColumnDisplacement = -1;
 }
 else if (WindDirection == "Southwest")
 {
 RowDisplacement = -1;
 ColumnDisplacement = 1;
 }
 else if (WindDirection == "Northwest")
 {
 RowDisplacement = 1;
 ColumnDisplacement = 1;

12

 46 of 51

 }
 if (WindDirection == "None")
 {
 Console.WriteLine("There was no wind this season");
 }
 else
 {
 Console.WriteLine("Prevailing wind: " + WindDirection);
 }

 for (int Row = 0; Row < FIELDLENGTH; Row++)
 {
 for (int Column = 0; Column < FIELDWIDTH; Column++)
 {
 if (Field[Row, Column] == PLANT)
 {
 SeedLands(Field, Row - 1 + RowDisplacement , Column -

1 + ColumnDisplacement);
 SeedLands(Field, Row - 1 + RowDisplacement, Column +

ColumnDisplacement);
 SeedLands(Field, Row - 1 + RowDisplacement, Column +

1 + ColumnDisplacement);
 SeedLands(Field, Row + RowDisplacement, Column - 1 +

ColumnDisplacement);
 SeedLands(Field, Row + RowDisplacement, Column + 1 +

ColumnDisplacement);
 SeedLands(Field, Row + 1 + RowDisplacement, Column -

1 + ColumnDisplacement);
 SeedLands(Field, Row + 1 + RowDisplacement, Column +

ColumnDisplacement);
 SeedLands(Field, Row + 1 + RowDisplacement, Column +

1 + ColumnDisplacement);
 }
 }
 }
}

 47 of 51

Java

03 1 public static void main(String[] args)

{

 int Number1 = 0;

 int Number2 = 0;

 int Temp1 = 0;

 int Temp2 = 0;

 int Result = 0;

 Number1 = Console.readInteger("Enter a whole number: ");

 Number2 = Console.readInteger("Enter another whole number:

");

 Temp1 = Number1;

 Temp2 = Number2;

 while (Temp1 != Temp2)

 {

 if (Temp1 > Temp2)

 {

 Temp1 = Temp1 - Temp2;

 }

 else

 {

 Temp2 = Temp2 - Temp1;

 }

 }

 Result = Temp1;

 Console.println(Result + " is GCF of " + Number1 + " and "

+ Number2);

}

6

08 1 static int GetHowLongToRun()

{

 int Years = 0;
 boolean Valid = false;

 Console.println("Welcome to the Plant Growing Simulation");

 Console.println();

 Console.println("You can step through the simulation a year

at a time");

 Console.println("or run the simulation for 0 to 5 years");

 Console.println("How many years do you want the simulation

to run?");
 while(!Valid)

 {

 try

 {

 Years = Console.readInteger("Enter a number between 0

and 5, or -1 for stepping mode: ");
 if(Years >= -1 && Years <=5)

 {

 Valid = true;

 }

 }

5

 48 of 51

 catch(Exception e)

 {

 }

 if (!Valid)

 {

 Console.println("Invalid input");

 }

 }

 return Years;

}

09 1 static void CountPlants(char[][] Field)

{

 int NumberOfPlants = 0;
 int TotalCells = 0;

 double Percentage = 0;

 for (int Row = 0; Row < FIELDLENGTH; Row++)

 {

 for (int Column = 0; Column < FIELDWIDTH; Column++)

 {

 if (Field[Row][Column] == PLANT)

 {

 NumberOfPlants++;

 }

 }

 }

 if (NumberOfPlants == 1)

 {

 Console.println("There is 1 plant growing");

 }

 else

 {

 Console.println("There are " + NumberOfPlants + " plants

growing");

 }
 TotalCells = FIELDLENGTH * FIELDWIDTH;

 Percentage =

((double)NumberOfPlants/(double)TotalCells)*100.0;

 Console.writeLine(Math.round(Percentage) + "%");

}

2

10 1 private static void SaveToFile(char[][] Field)

{

 String Response = "";

 String FileName = "";

 Console.print("Save the current Field state to a text file?

(Y/N):");

 Response = Console.readLine();

 if (Response.equals("Y"))

 {

 Console.print("Enter the File Name ");

 FileName = Console.readLine();

 AQAWriteTextFile2017 CurrentFile = new

9

 49 of 51

AQAWriteTextFile2017(FileName);

 for (int Row = 0; Row < FIELDLENGTH; Row++)

 {

 for (int Column = 0; Column < FIELDWIDTH; Column++)

 {

 CurrentFile.write(Field[Row][Column]);

 }

 CurrentFile.writeLine("|" + String.format("%3d", Row));

 }

 CurrentFile.closeFile();

 }

}

private static void Simulation()

{

 int YearsToRun;

 char[][] Field = new char[FIELDLENGTH][FIELDWIDTH];

 Boolean Continuing;

 int Year;

 String Response;

 YearsToRun = GetHowLongToRun();

 if (YearsToRun != 0)

 {

 InitialiseField(Field);

 if (YearsToRun >= 1)

 {

 for (Year = 1; Year <= YearsToRun; Year++)

 {

 SimulateOneYear(Field, Year);

 }

 }

 else

 {

 Continuing = true;

 Year = 0;

 while (Continuing)

 {

 Year++;

 SimulateOneYear(Field, Year);

 Console.print("Press Enter to run simulation for

another Year, Input X to stop: ");

 Response = Console.readLine();

 if (Response.equals("x") || Response.equals("X"))

 {

 Continuing = false;

 }

 }

 }

 Console.println("End of Simulation");
 SaveToFile(Field);

 50 of 51

 }

 Console.readLine();

}

11 1 static void SimulateAutumn(char[][] Field)

{

 String[] Direction = new String[] {"None", "East", "West",

"North", "South", "Southeast", "Northeast", "Southwest",

"Northwest"};

 Random RNDWindDirection = new Random();

 int PrevailingWind = RNDWindDirection.nextInt(9);

 String WindDirection = Direction[PrevailingWind];

 int ColumnDisplacement = 0;

 int RowDisplacement = 0;

 if(WindDirection.equals("East"))

 {

 ColumnDisplacement = -1;

 }

 else if(WindDirection.equals("West"))

 {

 ColumnDisplacement = 1;

 }

 else if(WindDirection.equals("North"))

 {

 RowDisplacement = 1;

 }

 else if(WindDirection.equals("South"))

 {

 RowDisplacement = -1;

 }

 else if(WindDirection.equals("Southeast"))

 {

 ColumnDisplacement = -1;

 RowDisplacement = -1;

 }

 else if(WindDirection.equals("Northeast"))

 {

 ColumnDisplacement = -1;

 RowDisplacement = 1;

 }

 else if(WindDirection.equals("Southwest"))

 {

 ColumnDisplacement = 1;

 RowDisplacement = -1;

 }

 else if(WindDirection.equals("Northwest"))

 {

 ColumnDisplacement = 1;

 RowDisplacement = 1;

 }

 if(WindDirection.equals("None"))

 {

12

 51 of 51

 Console.println("There was no wind this season");

 }

 else

 {

 Console.println("Prevailing wind: " + WindDirection);

 }

 for (int Row = 0; Row < FIELDLENGTH; Row++)

 {

 for (int Column = 0; Column < FIELDWIDTH; Column++)

 {

 if (Field[Row][Column] == PLANT)

 {
 SeedLands(Field, Row - 1 + RowDisplacement, Column -

1 + ColumnDisplacement);

 SeedLands(Field, Row - 1 + RowDisplacement, Column +

ColumnDisplacement);

 SeedLands(Field, Row - 1 + RowDisplacement, Column +

1 + ColumnDisplacement);

 SeedLands(Field, Row + RowDisplacement, Column - 1 +

ColumnDisplacement);

 SeedLands(Field, Row + RowDisplacement, Column + 1 +

ColumnDisplacement);

 SeedLands(Field, Row + 1 + RowDisplacement, Column -

1 + ColumnDisplacement);

 SeedLands(Field, Row + 1 + RowDisplacement, Column +

ColumnDisplacement);

 SeedLands(Field, Row + 1 + RowDisplacement, Column +

1 + ColumnDisplacement);

 }

 }

 }

}

