AQAH

AS
Computer Science

7516/1 - Paper 1
Mark scheme

June 2018

Version/Stage: 1.0 Final

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

Further copies of this mark scheme are available from aga.org.uk

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

The following annotation is used in the mark scheme:

; - means a single mark

I - means alternative response

/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough

I - means ignore

DPT - means "Don't penalise twice". In some questions a specific error made by a candidate, if
repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

Pages 5 to 14 contain the generic mark scheme.

Pages 15 to 48 contain the ‘Program Source Codes’ specific to the programming languages for
questions 03, 11, 12, 13 and 14;

pages 20 to 29 — VB.NET

pages 30 to 36 — PYTHON 2
pages 37 to 43 - PYTHON 3
pages 44 to 50 — PASCAL/Delphi
pages 51to 61 — C#

pages 62 to 69 — JAVA

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Examiners are required to assign each of the candidates’ responses to the most appropriate level
according to its overall quality, then allocate a single mark within the level. When deciding upon a
mark in a level examiners should bear in mind the relative weightings of the assessment objectives

€g
In question 11.1, the marks available for the AO3 elements are as follows:

AO3 (design) — 3 marks
AO3 (programming) — 9 marks
Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive

will be restricted accordingly.

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Qu Marks
01 All marks for AO1 (knowledge) 4
Breaking a problem into a number of sub-problems F
Models are put into action to solve problems H
Combining procedures into compound procedures G
Details are removed until the problem is represented in a way
that is possible to solve because the problem reduces to one E
that has already been solved

1 mark per correct label

Note: each label must only be used once (if given more than once, ignore all
occurrences)

A. handwritten answers

A. lower case

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Qu

Marks

02

All marks for A02 (apply) 3

Number | Root | d | FactorFound | r | Output

5 1
2
3
2 FALSE 1
3 2
4 Prime

1 mark for correct columns Root and d
1 mark for correct column r
1 mark for correct columns FactorFound and Output

Max 2 marks if any incorrect values written in table

3
I. Annotation indicating ‘no value’
I. Indication of repeating values
I. Quotes
I. Case & spelling for FactorFound & Output
A. T, F instead of True False

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Qu

Marks

02

All marks for A02 (apply) 3

Number | Root d FactorFound r Output

25 1
2
3
4
5 2 False 1
3 1
4 1
5 0
True
6 Ngt
prime

1 mark for correct columns Root and d
1 mark for correct column r
1 mark for correct columns FactorFound and Output

Max 2 marks if any incorrect values written in table

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

03

All marks for AO3 (programming)

Mark as follows:

1)

2)

3)
4)

5)

6)
7
8)
9)

Correct variable declarations for Number, c, k;

Note to examiners

If a language allows variables to be used without explicit declaration (eg
Python) then this mark should be awarded if the correct variables exist in the
program code and the first value they are assigned is of the correct data type.

WHILE loop with syntax allowed by the programming language and one correct
condition for termination of the loop;

Second correct condition for while loop;

Correct prompt "Enter a positive whole number: " and Number
assigned value entered by user;

Correct syntax for the IF statements inside attempt at loop;
A.IF .. ELSEIF;

correct contents in TF statements;
FOR loop with syntax allowed by the programming language over correct range;
Correct assignment to ¢ inside FOR loop;

Output statement giving correct output; A. accept without spaces

I. Ignore minor differences in case and spelling
R. real Number

Max 8 if code does not function correctly

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

03

Mark is for AO3 (evaluate) 1

**** SCREEN CAPTURE ****

Must match code from 03.1, including prompts on screen capture matching those in
code.

Code for 03.1 must be sensible.

Screen capture showing:

'-3' being entered and the message 'Not a positive number."' displayed
'11' being entered and the message 'Number too large.' displayed
'10' being entered and line of numbers displayed

Enter a positive whole number: -3
Not a positive number.
Enter a positive whole number: 11
Number too large.
Enter a positive whole number: 10
1 9 36 84 126 126 84 36 9 1

>

A. Alternative layout :

Enter a positive whole number: -3
Not a positive number.

Enter a positive whole number: 11
Number too large.

Enter a positive whole number: 10
1

9

36

84

126

126

84

36

9

1

>

A. input on new line

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

04

Mark is for AO1 (understanding) 1
LetterEnd // ProgramEnd ;
R. if any additional code

R. if spelt incorrectly
I. case & spacing

10

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

04

Mark is for AO1 (understanding)

GetMenuOption // Decode ; A.GetNextSymbol

R. if any additional code
R. if spelt incorrectly
I. case & spacing

05

All marks for AO1 (understanding)

Identifier Description
PlainTextLetter |uncoded letter, part of PlainText
Signal single unit of Transmission (= or SPACE or EOL)
FirstSignal first character in Transmission
Symbol used to build SymbolString (. or -)

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1 mark per correct identifier

Note: each identifier must only be used once (if given more than once, ignore all

occurrences)

11

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 -

JUNE 2018

06 Mark is for AO1 (understanding)
1) makes a subroutine self-contained,;
2) releases storage when subroutine terminates;
3) able to test/debug subroutine independently ;
4) easier to re-use subroutine in another program;
5) local variable values cannot be inadvertently/accidentally altered by a subroutine
call from the subroutine;
Max 1
07 All marks for AO2 (analyse)
the variable is used as the index of /pointer to / iterator for / place value;
... the current character/symbol/signal in the transmission string;
07 All marks for AO2 (analyse)
1) empty string returned from StripLeadingSpaces (and assigned to
Transmission) // generate empty string in StripLeadingSpaces;
2) StripLeadingSpaces (calls ReportError) to display “No signal received”
3) empty string is returned to ReceiveMorseCode
I/l empty string is returned from GetTransmission;
4) LastCharissetto -1;
5) so loop is not entered;
6) MorseCodeString/PlainText remain empty strings;
Max 5
08 All marks for AO2 (analyse)

1) Any example string with only two consecutive symbols, for example “=="

/[any example string with more than 3 consecutive symbols, such as “====";

Note: “xxx” would not cause an error.

Note: It does not matter which non-space symbol is used in transmission.
2) The while loop counts the number of consecutive non-spaces;
3) If this number is not 0, 1 or 3, (it calls the ReportError subroutine);

l. quotes

’

12

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

09

Mark is for AO2 (analyse)
GetNextLetter;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

09

Mark is for AO2 (analyse)
GetNextSymbol;
R. if any additional code

R. if spelt incorrectly
|. case & spacing

10

All marks AO2 (analyse)

mark as follows:
1) include digits 0to 9

2) include Morse codes in MorseCode array for digit characters;

3) extend Dash and Dot array;

4) at the corresponding positions some of the zeros will need to change (to
include new pointers) // binary tree to include routes to digit characters;

5) Decode subroutine needs no changes;

6) SendMorseCode needs to test for digits;

7) Explain a method to look up Morse code for digits (eg linear search of

Letter array);

Unusual answers should be referred to the PE
A. answers using dictionary for digits
A. Letter and MorseCode arrays need changing; for 1 mark if (1) and (2) not awarded

Max 6

in Letter array;

13

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

11 1 mark for AO3 (design) and 3 marks for AO3 (programming)
Mark as follows:
AO3 (design) — 1 mark:

1) Identifying that a selection statement (or equivalent method) is required to test
that character is within range of uppercase letters or is a space // identifying
that selection statement needs modifying (e.g.1if Char in Letter...);

AO3 (programming) — 3 marks:

2) Selection structure is created with correct logic so that if error detected it
ensures error message is displayed only once & subroutine exits;

3) calls ReportError subroutine with suitable message if error in input string;

4) final value of MorseCodeString setto EMPTYSTRING (accept ' ' or
SPACE) if error in input string;

A. accept if MorseCodeString set to EMPTYSTRING initially and not
changed.
11 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 11.1, including prompts on screen capture matching those in
code.

Code for 11.1 must be sensible.

Screen capture showing:
‘S’ being entered followed by ‘Help’ and suitable message displayed

Main Menu

R - Receive Morse code
S — Send Morse code
X — Exit program

Enter your choice: S

Enter your message (uppercase letters and spaces only):
Help

* Invalid character entered *

A. any suitable message, but must be within *s

14

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

12 1 mark for AO3 (design) and 6 marks for AO3 (programming) 7
Mark as follows:
AQO3 (design) — 1 mark:
1) Identifying that within an iterative statement a selection statement (or
equivalent method) is required to test whether the Morse code is a dot, a dash
or a space;
AO3 (programming) — 5 marks:
2) Correct subroutine heading (SendSignals) and ending and correct
parameter (MorseCodeString);
3) loop for each character in MorseCodeString;
4) start with empty string and keep adding a symbol string;
5) at least one conversion of dot, dash or space to the correct symbol string;
6) dot, dash and space converted to the correct symbol string;
7) output the signals correctly;
12 Mark is for AO3 (evaluate) 1

*+rx SCREEN CAPTURE *+

Must match code from 12.1, including prompts on screen capture matching those in

code.

Code for 12.1 must be sensible.

Screen capture showing:
S being entered followed by MORSE X

and the String == === === === =
displayed after the Morse code.

Main Menu

R - Receive Morse code

S - Send Morse code

X - Exit p

Enter your
Enter your
MORSE X

rogram

choice: S

message (uppercase letters

and

spaces only) :

15

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

2 marks for AO3 (design) and 4 marks for AO3 (programming) 6

Note that AO3 (design) marks are for selecting appropriate techniques to use to solve
the problem, so should be credited whether the syntax of programming language
statements is correct or not regardless of whether the solution works.

Level Description Mark
Range
3 A line of reasoning has been followed to arrive at a 5-6

logically structured working or almost fully working
programmed solution. Code is written to ensure that all
letters are output with their corresponding Morse code.
The formatting of each line has been considered. A
formal interface is used to pass the data structures’ data
into the subroutine. All of the appropriate design
decisions have been taken.

2 There is evidence that a line of reasoning has been 3-4
partially followed. The formatting of each line does not
fully comply with requirements. There is evidence of
some appropriate design work. There is Morse code
output for each letter.

1 An attempt has been made to create 1-2
OutputAlphabetWithCode and some appropriate
programming statements have been written. There is
insufficient evidence to suggest that a line of reasoning
has been followed or that the solution has been
designed. The statements written may or may not be
syntactically correct and the subroutine will have very
little or none of the required functionality. It is unlikely that
any of the key design elements of the task have been
recognised.

Marking guidance:
Evidence of AO3 desigh — 2 points:
Evidence of design to look for in response:

1) identify the need for an iterative statement to act on each letter in turn
2) identify a method to output four letters per line

Evidence of AO3 programming — 7 points:
Evidence of programming to look for in response:

3) add option A to DisplayMenu subroutine

4) add test for new option and call CutputAlphabetWithCode with correct
parameters

5) create new subroutine OutputAlphabetWithCode with correct
parameters

6) loop from A to Z to output each letter and corresponding code separated from

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

letter by one space (A. two spaces)

13

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 13.1, including prompts on screen capture matching those in
code.

Code for 13.1 must be sensible.

Screen capture showing:
main menu with new option A
‘A’ being entered and alphabet with Morse codes displayed

Main Menu

R — Receive Morse code

S — Send Morse code

A - Output alphabet with Morse code
X - Exit program

Enter your choice: A

KGOIIZI—!HIP
. e
N<"W%Q'TJUJ

[
STDO;G)O
NH"ULLEU

[

If not in columns as shown, do not award screen capture mark

17

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

14

3 marks for AO3 (design) and 6 marks for AO3 (programming)

Note that AO3 (design) marks are for selecting appropriate techniques to use to solve
the problem, so should be credited whether the syntax of programming language
statements is correct or not regardless of whether the solution works.

Level Description Mark
Range
3 A line of reasoning has been followed to arrive at a 7-9

logically structured working or almost fully working
programmed solution. Code is written to ensure that each
letter of the message is encrypted using the user-
supplied keys. All of the appropriate design decisions
have been taken.

2 There is evidence that a line of reasoning has been 4-6
partially followed. The encryption of each character does
not fully comply with requirements. There is evidence of
some appropriate design work.

1 An attempt has been made to amend the subroutines. 1-3
Some appropriate programming statements have been
written. There is little evidence to suggest that a line of
reasoning has been followed or that the solution has
been designed. The statements written may or may not
be syntactically correct and the subroutines will have very
little or none of the extra required functionality. It is
unlikely that any of the key design elements of the task
have been recognised.

Marking guidance:
Evidence of AO3 designh — 3 points:
Evidence of design to look for in response:

1) identifying the need to validate a key is an integer

2) identifying a method to encrypt each character with a key

3) identifying suitable method to alternate keys depending on character position in
message

Evidence of AO3 programming — 6 points:
Evidence of programming to look for in response:

4) in SendReceiveMessages correctly store 3 integer keys entered by the user
(in a list or separate variables)

5) amend call and subroutine header of SendMorseCode to include keys as
parameter(s)

6) correctly encrypt first three characters of message

7) correctly encrypt all characters in message

8) ensure index is within range of array subscripts

9) code to encrypt character inserted in suitable place in SendMorseCode

18

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

14

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 14.1, including prompts on screen capture matching those in
code.

Code for 14.1 must be sensible.

Screen capture showing:
17, 5 and -3 being entered followed by option S and then TEA X followed by
the output .- —-- .-—— —.-—— ——. - -, ..

Enter encryption key (integer): 17
Enter encryption key (integer): 5
Enter encryption key (integer): -3

Main Menu

R - Receive Morse code
S - Send Morse code
X - Exit program

Enter your choice: S
Enter your message (uppercase letters and spaces only):
TEA X

Total

75

19

VB.NET

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

03

Sub Main ()
Dim Number As Integer
Dim ¢ As Integer
Number = 0
While Number < 1 Or Number > 10
Console.Write ("Enter a positive whole number: ")
Number = Console.ReadLine
If Number > 10 Then
Console.WritelLine ("Number too large")
Else
If Number < 1 Then
Console.WritelLine ("Not a positive number.")
End If
End If
End While
c =1
For k = 0 To Number - 1
Console.WriteLine (c)
c = (c * (Number - 1 - k)) \ (k + 1)
Next
Console.ReadLine ()
End Sub

20

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

11

Sub SendMorseCode (ByVal MorseCode () As String)
Dim PlainText As String
Dim PlainTextLength As Integer
Dim MorseCodeString As String
Dim PlainTextLetter As Char
Dim CodedLetter As String
Dim Index As Integer

Console.Write ("Enter your message (uppercase letters and

spaces only): ")

PlainText = Console.ReadLine ()
PlainTextLength = PlainText.Length ()
MorseCodeString = EMPTYSTRING

For i = 0 To PlainTextLength - 1
PlainTextLetter = PlainText (i)
If PlainTextLetter = SPACE Then

Index = 0
Elself PlainTextLetter >= "A" And PlainTextLetter <=
"Z" Then
Index = Asc(PlainTextLetter) - Asc("A") + 1
Else
ReportError ("Invalid character entered")
Index = 0
MorseCodeString = EMPTYSTRING
Exit For
End If

CodedLetter = MorseCode (Index)
MorseCodeString = MorseCodeString + CodedLetter +
SPACE
Next
Console.WritelLine (MorseCodeString)
End Sub

Alternative answer:
Sub SendMorseCode (ByVal MorseCode () As String)
Dim PlainText As String
Dim PlainTextLength As Integer
Dim MorseCodeString As String
Dim PlainTextLetter As Char
Dim CodedLetter As String
Dim Index As Integer

Console.Write ("Enter your message (uppercase letters and

spaces only): ")
PlainText = Console.ReadLine ()
Dim Valid As Boolean = True
For Each ch In PlainText
If ch <> SPACE Then
If ch < "A" Or ch > "Z" Then
Valid = False
MorseCodeString = EMPTYSTYRING
ReportError ("Invalid character entered")
End If

21

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

End If
Next
If Valid Then
PlainTextLength = PlainText.Length ()
MorseCodeString = EMPTYSTRING
For i = 0 To PlainTextLength - 1
PlainTextLetter = PlainText (1)
If PlainTextLetter = SPACE Then
Index = 0
Else
Index = Asc(PlainTextLetter) - Asc("A") + 1
End If
CodedLetter = MorseCode (Index)
MorseCodeString = MorseCodeString + CodedLetter +
SPACE
Next
End If
Console.WritelLine (MorseCodeString)
End Sub

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

12

Sub SendSignals (ByVal MorseCodeString As String)
Dim Transmission As String = EMPTYSTRING
Dim CodeStringlength = MorseCodeString.Length ()
Dim Symbol As String
Dim SymbolString As String
For i = 0 To CodeStringLength - 1
Symbol = MorseCodeString (i)
If Symbol = "." Then
SymbolString = "= "
Elself Symbol = "-" Then
SymbolString = "=== "
ElseIf Symbol = Space Then
SymbolString = SPACE + SPACE
End If
Transmission += SymbolString
Next
Console.Writeline (Transmission)
End Sub

23

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

13

Sub OutputAlphabetWithCode (ByVal Letter () As String, ByVal
MorseCode () As String)
For Ptr = 1 To 26
Console.Write (Letter(Ptr) + " ")
Console.Write (MorseCode (Ptr) .PadRight (6))
If Ptr Mod 4 = 0 Then
Console.WriteLine ()
End If
Next
Console.WritelLine ()
End Sub

Sub DisplayMenu ()
Console.Writeline
Console.Writeline

)

'Main Menu")

(

(
Console.Writeline ("=========")

(

Console.WriteLine
Console.WriteLine ("S -
Console.WriteLine ("A -
Console.WriteLine ("X -

"R - Receilive Morse code")

Send Morse code")
Output alphabet with Morse code")
Exit Program")

Console.WriteLine ()
End Sub

Sub SendReceiveMessages ()

Dim Dash = {20, 23, 0, 0, 24, 1, O, 17, 0, 21, 0, 25, O,
5, 11, 0, 0, 0, 0, 22, 13, 0, 0O, 10, 0O, 0O, 0}

Dim Letter — {"SPACE"’ "A"’ "B"’ "C"’ "D"’ "E"’ "F"’
"G"’ "H"’ "I"’ "J"’ "K"’ "L"’ "M"’ "N"’ "O"’ "P"’ "Q"’
"R", "S", "T", "U", "V", "W", "X", "Y", "Z"}

Dim Dot = {5, 18, O, O, 2, 9, 0, 26, 0, 19, 0O, 3, 0, 7,
4, 0, 0, 0, 12, 8, 14, 6, 0, 16, 0, 0, 0}

Dim MorseCode = {"SPACE", ".-=-", "—-_..", "—.=.", "-_.",

4 . 4 4 . 14

Dim MenuOption As String

Dim ProgramEnd As Boolean = False
While Not ProgramEnd
DisplayMenu ()
MenuOption = GetMenuOption ()
If MenuOption = "R" Then
ReceiveMorseCode (Dash, Letter, Dot)
ElseIf MenuOption = "S" Then

SendMorseCode (MorseCode)
ElseIf MenuOption = "A" Then
OutputAlphabetWithCode (Letter, MorseCode)

ElseIf MenuOption = "X" Then
ProgramEnd = True
End If
End While

End Sub

24

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

14

Sub SendMorseCode (ByVal MorseCode () As String, ByVal
Keys () As Integer)
Dim PlainText As String
Dim PlainTextLength As Integer
Dim MorseCodeString As String
Dim PlainTextLetter As Char
Dim CodedLetter As String
Dim Index As Integer
Console.Write ("Enter your message (uppercase letters and
spaces only): ")
PlainText = Console.ReadLine ()
Dim Valid As Boolean = True
For Each ch In PlainText
If ch <> SPACE Then
If ch < "A" Or ch > "Z" Then
Valid = False
MorseCodeString = EMPTYSTRING
ReportError ("Invalid character entered")
End If
End If
Next
If Valid Then
PlainTextLength = PlainText.Length ()
MorseCodeString = EMPTYSTRING
For i = 0 To PlainTextLength - 1
PlainTextLetter = PlainText (1)
If PlainTextLetter = SPACE Then

Index = 0
Else

Index = Asc(PlainTextLetter) - Asc("A") + 1
End If

Index += Keys (i Mod 3)
While Index < 0
Index += 27
End While
While Index >= 27
Index -= 27
End While
CodedLetter = MorseCode (Index)
MorseCodeString = MorseCodeString + CodedLetter +
SPACE
Next
End If
Console.WritelLine (MorseCodeString)
SendSignals (MorseCodeString)
End Sub

Sub SendReceiveMessages ()

bim Dash = {20, 23, 0, 0O, 24, 1, 0, 17, O, 21, 0, 25, 0O,
15, 11, o0, 0, O, O, 22, 13, 0O, 0, 10, O, 0O, O}

Dim Letter — {HSPACEH, HAH, HBH, HCH, HDH, HEH, HFH,

25

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

"G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q",
HR"’ HS"’ HT"’ HU"’ HV"’ HW"’ HX"’ HY"’ HZ"}
Dim Dot = {5, 18, o0, O, 2, 9, 0O, 26, 0, 19, 0, 3, O,
4, 0, 0, 0, 12, 8, 14, 6, 0, 16, 0, 0, 0}
Dim MorseCode = {"SPACE", ".-=-", "—-...", "—.=.", "—_.
won " _mn w__ n " " " " w o o___mn w_ _mn woo_
14 14 14 14 14 14 14
\AJ _n "w__ \AJ w____nmn \AJ —_— \AJ "w____ _n \AJ — \AJ \AJ \AJ A A
14 14 14 14 14 14 14 14
" " _n " —__n "w__ _n "w__ —__n n — n }
. . ’ . 7 .. 7 . 14
Dim MenuOption As String
Dim ProgramEnd As Boolean = False
Dim Keys() As Integer = {0, 0, 0}

Dim ValidDisplacement As Boolean
Dim Displacement As Integer
For i = 0 To 2
ValidDisplacement = False
While Not ValidDisplacement
Try
Console.Write ("Enter encryption key (integer):
Displacement = Console.ReadLine

ValidDisplacement = True
Catch ex As Exception
End Try
Keys (i) = Displacement
End While
Next
While Not ProgramkEnd
DisplayMenu ()
MenuOption = GetMenuOption ()
If MenuOption = "R" Then
ReceiveMorseCode (Dash, Letter, Dot)
ElseIf MenuOption = "S" Then
SendMorseCode (MorseCode, Keys)
ElseIf MenuOption = "A" Then
OutputAlphabetWithCode (Letter, MorseCode)
ElseIf MenuOption = "X" Then
ProgramEnd = True
End If
End While

End Sub

")

26

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Alternative answer:
Sub SendMorseCode (ByVal MorseCode () As String, ByVal Keyl
As Integer, ByVal Key2 As Integer, ByVal Key3 As Integer)
Dim PlainText As String
Dim PlainTextLength As Integer
Dim MorseCodeString As String
Dim PlainTextLetter As Char
Dim CodedLetter As String
Dim Index As Integer
Dim Displacement As Integer
Console.Write ("Enter your message (uppercase letters and
spaces only): ")
PlainText = Console.ReadLine ()
Dim Valid As Boolean = True
For Each ch In PlainText
If ch <> SPACE Then
If ch < "A" Or ch > "Z" Then
Valid = False
MorseCodeString = EMPTYSTRING
ReportError ("Invalid character entered")
End If
End If
Next
If Valid Then
PlainTextLength = PlainText.Length ()
MorseCodeString = EMPTYSTRING
For i = 0 To PlainTextLength - 1
PlainTextLetter = PlainText (1)
If PlainTextLetter = SPACE Then

Index = 0
Else

Index = Asc(PlainTextLetter) - Asc("A") + 1
End If

If i Mod 3 = 0 Then
Displacement = Keyl
ElseIf i Mod 3 = 1 Then
Displacement = Key2

Else
Displacement
End If
Index += Displacement
While Index < O
Index += 27

Key3

End While

While Index >= 27
Index -= 27

End While

CodedLetter = MorseCode (Index)
MorseCodeString = MorseCodeString + CodedLetter +
SPACE
Next

27

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

End If
Console.WritelLine (MorseCodeString)
SendSignals (MorseCodeString)

End Sub

Sub SendReceiveMessages ()
Dim Dash = {20, 23, 0, O, 24, 1, O, 17, 0, 21, O,
15, 11, o0, 0, O, O, 22, 13, 0, 0, 10, O, O, O}

25,

Dim Letter = {"SPACE", "A", "B", "C", "D", "E", "F",
HGH’ HHH’ HIH’ HJH’ HKH’ HLH’ HMH’ HNH’ HOH’ HPH’ HQH’

"R", “S", "T", "U", "V", "W, X", "Y', "Z"}

Dim Dot = {5, 18, 0, O, 2, 9, O, 26, 0, 19, 0, 3,
4, o0, 0, 0, 12, 8, 14, 6, 0, 16, 0, 0, 0}

Dim MorseCode = {"SPACE", ".-", "—-_,..", "—,=-.", "

R , Loy . ,
Dim MenuOption As String
Dim ProgramEnd As Boolean = False
Dim ValidDisplacement As Boolean
Dim Keyl As Integer
Dim Key2 As Integer
Dim Key3 As Integer
ValidDisplacement = False
While Not ValidDisplacement

Try

Console.Write ("Enter encryption key (integer):

Keyl = Console.ReadLine
ValidDisplacement = True
Catch ex As Exception
End Try
End While
ValidDisplacement = False
While Not ValidDisplacement
Try

Console.Write ("Enter encryption key (integer):

Key2 = Console.ReadLine
ValidDisplacement = True
Catch ex As Exception
End Try
End While
ValidDisplacement = False
While Not ValidDisplacement
Try

Console.Write ("Enter encryption key (integer):

Key3 = Console.ReadLine
ValidDisplacement = True
Catch ex As Exception
End Try
End While
While Not ProgramEnd

")

")

")

0,

28

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

DisplayMenu ()
MenuOption = GetMenuOption ()
If MenuOption = "R" Then
ReceiveMorseCode (Dash, Letter, Dot)
ElseIf MenuOption = "S" Then
SendMorseCode (MorseCode, Keyl, Key2, Key3)
ElseIf MenuOption = "A" Then
OutputAlphabetWithCode (Letter, MorseCode)
ElseIf MenuOption = "X" Then
ProgramEnd = True
End If
End While

End Sub

29

Python 2

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

03

1

Number = 0 9

while Number < 1 or Number > 10:

C

for k in range (Number) :

Number = int (raw input ("Enter a positive whole number: "))
if Number > 10:
print "Number too large"
elif Number < 1:
print "Not a positive number"
=1

print c
c = (¢ * (Number - 1 - k)) // (k + 1)

30

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

11 |1

def SendMorseCode (MorseCode) :
(uppercase letters

PlainText = raw input ("Enter your message
and spaces only): ")
PlainTextLength = len(PlainText)

MorseCodeString = EMPTYSTRING
for 1 in range (PlainTextLength) :
PlainTextLetter = PlainText[1i]

if PlainTextLetter == SPACE:
Index = 0
elif PlainTextLetter >= 'A' and PlainTextLetter <= 'Z':
Index = ord(PlainTextlLetter) — ord('A') + 1
else:
ReportError ("Invalid character entered")
Index = 0
MorseCodeString = EMPTYSTRING
break

CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE

print MorseCodeString

Alternative answer:
def SendMorseCode (MorseCode) :
PlainText = raw input ("Enter your message
and spaces only): ")
Valid = True
for Character in PlainText:
if Character '= SPACE:
if Character < "A" or Character > "Z":
Valid = False
MorseCodeString = EMPTYSTRING
ReportError ("Invalid character entered")

break
if valid:
PlainTextLength len(PlainText)
MorseCodeString = EMPTYSTRING
for 1 in range (PlainTextLength) :
PlainTextLetter = PlainText[i]
if PlainTextLetter == SPACE:
Index = 0

else:
Index = ord(PlainTextlLetter) - ord('A'")

CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE

print MorseCodeString

(uppercase letters

+ 1

31

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

12

def SendSignals (MorseCodeString) :
Transmission = EMPTYSTRING
CodeStringLength = len (MorseCodeString)
for i in range (CodeStringLength) :
Symbol = MorseCodeString[i]
if Symbol == '.':
SymbolString
elif Symbol == '-':
SymbolString = "===
elif Symbol == SPACE:
SymbolString = SPACE + SPACE
Transmission = Transmission + SymbolString
print Transmission

n_ n

w

32

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

def OutputAlphabetWithCode (Letter, MorseCode) :
for Ptr in range(l, 27):
print Letter[Ptr], end=SPACE
print '{0:<5}'.format (MorseCode[Ptr]), end=SPACE
if Ptr % 4 ==
print
print

def DisplayMenu() :

print

print "Main Menu"

print "=s=s======"

print "R - Receive Morse code"
print "S - Send Morse code"

print "A - Output alphabet with Morse code"
print "X - Exit program"
print

def SendReceiveMessages|() :

Dash =

[20,23,0,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,0,22,13,0,0,10,0,0,0]
Dot =

[5,18,0,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0]
Letter =

[IISPACEH’lAl’lBl’lCl’lDl’lEl’lFl’lGl’lHl’lIl’lJl’lKl’lLl’lMl’lNl’l

Ol’lPl’lQl’lRl’lSl’lTl’lUl’lVl’lWl’le’lYl’lZl]

MorseCode = ["SPACE",'.=-'",'—...", "=, =", """, """, "..=-.","—-

ProgramEnd = False
while not ProgramEnd:

DisplayMenu ()

MenuOption = GetMenuOption ()

if MenuOption == 'R':
ReceiveMorseCode (Dash, Letter, Dot)

elif MenuOption == 'S':
SendMorseCode (MorseCode)

elif MenuOption == 'A':
OutputAlphabetWithCode (Letter, MorseCode)

elif MenuOption == 'X':

ProgramEnd = True

33

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

B

def SendMorseCode (MorseCode, Keys): 9
PlainText = raw input ("Enter your message (uppercase letters and
spaces only): ")
PlainTextLength = len(PlainText)
MorseCodeString = EMPTYSTRING
for 1 in range (PlainTextLength) :
PlainTextlLetter = PlainText[1i]

if PlainTextLetter == SPACE:
Index = 0
else:
Index = ord(PlainTextlLetter) - ord('A') + 1

Index = Index + Keys[i % 3]
while Index < O0:
Index = Index + 27
while Index >= 27:
Index = Index - 27
CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE

print (MorseCodeString)

def SendReceiveMessages () :

Dash =

[20,23,0,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,0,22,13,0,0,10,0,0,0]
Dot =

[5,18,0,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0]
Letter =

[llSPACE"’lAl’lBl’lCl’lDl’IEIIIFIIIGIIIHIIIIIIIJIIlKl’lLl’lMl’lNl’l

Ol’lPl’lQl’lRl’lSl’lTl’lUl’lVl’lWl’le’lYl,|Z|]

MorseCode = ["SPACE",'.=-'",'—-...", "=, =", "= . ", """, "..=-.","—

v v v v v v —_—1 vV_ v — l vV__1 v |l vV v I —_ =
o o o

ProgramEnd = False

Keys = [0,0,0]
for i in range(3):
ValidDisplacement = False
while not ValidDisplacement:
try:
Displacement = int(raw_input("Enter encryption key
(integer): "))
ValidDisplacement = True
except:
pass
Keys[i] = Displacement

while not ProgramEnd:

DisplayMenu ()
MenuOption = GetMenuOption ()
if MenuOption == 'R':

ReceiveMorseCode (Dash, Letter, Dot)

34

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

elif MenuOption == 'S':
SendMorseCode (MorseCode, Keys)

elif MenuOption == 'X':
ProgramEnd = True

Alternative answer:
def SendMorseCode (MorseCode, Keyl, Key2, Key3):

PlainText = input ("Enter your message (uppercase letters and
spaces only): ")

PlainTextLength = len(PlainText)

MorseCodeString = EMPTYSTRING

for 1 in range (PlainTextLength) :
PlainTextlLetter = PlainText[1i]

if PlainTextLetter == SPACE:
Index = 0
else:
Index = ord(PlainTextLetter) - ord('A') + 1
if i & 3 ==
Displacement = Keyl
elif i & 3 ==
Displacement = Key2
else:

Displacement = Key3
Index = Index + Displacement
while Index < O:
Index = Index + 27
while Index >= 27:
Index = Index - 27
CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE
print (MorseCodeString)

def SendReceiveMessages|() :

Dash =

[20,23,0,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,0,22,13,0,0,10,0,0,0]
Dot =

[5,18,0,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0]
Letter =

["SPACE",IAI,IBI,ICI,IDI,IEI,IFI,IGI,IHI,III,IJI,IKI,ILI,IMI,INI,I

O','P','Q','R','S','T','U','V','W','X','Y','Z']

[HSPACEH’l._|’|_...|,|_._.|,|_..|,V.V,V.._.V,V__

MorseCode =

ProgramEnd = False
ValidDisplacement = False
while not ValidDisplacement:
try:
Keyl = int(input ("Enter encryption key (integer) :
ValidDisplacement = True

"))

35

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

except:
pass
ValidDisplacement = False
while not ValidDisplacement:
try:

Key2 = int(input("Enter encryption key (integer):

ValidDisplacement = True
except:
pass
ValidDisplacement = False
while not ValidDisplacement:
try:

Key3 = int(input("Enter encryption key (integer):

ValidDisplacement = True
except:
pass

while not Programknd:

DisplayMenu ()
MenuOption = GetMenuOption ()
if MenuOption == 'R':
ReceiveMorseCode (Dash, Letter, Dot)
elif MenuOption == 'S':
SendMorseCode (MorseCode, Keyl, Key2, Key3)
elif MenuOption == 'X':

ProgramEnd = True

"))

"))

36

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Python 3

03

1

Number = 0
while Number < 1 or Number > 10:
Number = int (input ("Enter a positive whole number: "))
if Number > 10:
print ("Number too large")
elif Number < 1:
print ("Not a positive number")
c =1
for k in range (Number) :
print (c)
c = (¢ * (Number - 1 - k)) // (k + 1)

37

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

11

def SendMorseCode (MorseCode) :
PlainText = input ("Enter your message (uppercase letters and
spaces only): ")
PlainTextLength = len(PlainText)
MorseCodeString = EMPTYSTRING
for 1 in range (PlainTextLength) :
PlainTextlLetter = PlainText[i]

if PlainTextLetter == SPACE:
Index = 0
elif PlainTextlLetter >= 'A' and PlainTextLetter <= 'Z':
Index = ord(PlainTextlLetter) — ord('A') + 1
else:
ReportError ("Invalid character entered")
Index = 0
MorseCodeString = EMPTYSTRING
break

CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE
print (MorseCodeString)

Alternative answer:
def SendMorseCode (MorseCode) :
PlainText = input ("Enter your message (uppercase letters and
spaces only): ")
Valid = True
for Character in PlainText:
if Character !'= SPACE:
if Character < "A" or Character > "Z":
Valid = False
MorseCodeString = EMPTYSTRING
ReportError ("Invalid character entered")
break
if valid:
PlainTextLength len(PlainText)
MorseCodeString = EMPTYSTRING
for 1 in range (PlainTextLength) :
PlainTextlLetter = PlainText[i]

if PlainTextLetter == SPACE:
Index = 0
else:
Index = ord(PlainTextLetter) - ord('A') + 1

CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE
print (MorseCodeString)

38

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

12

def SendSignals (MorseCodeString) :
Transmission = EMPTYSTRING
CodeStringLength = len (MorseCodeString)
for i in range (CodeStringLength) :
Symbol = MorseCodeString[i]
if Symbol == '.':
SymbolString = "=
elif Symbol == '-"':
SymbolString = "=== "
elif Symbol == SPACE:
SymbolString = SPACE + SPACE
Transmission = Transmission + SymbolString
print (Transmission)

39

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

13

def OutputAlphabetWithCode (Letter, MorseCode) :
for Ptr in range(l, 27):
print (Letter[Ptr], end=SPACE)
print('{0:<5}'.format (MorseCode[Ptr]), end=SPACE)
if Ptr % 4 ==
print ()
print ()

def DisplayMenu() :

print ()

print ("Main Menu")

print ("=========")

print ("R - Receive Morse code")
print ("S - Send Morse code")

print ("A - Output alphabet with Morse code")
print ("X - Exit program")
print ()

def SendReceiveMessages () :

bash = [20,23,0,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,0,22,13,0,0,10,0,0,0]1
Dot = [5,18,0,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0]
Letter =

["SPACE"’ lAl’ lBl’ lCl’ lDl’ lEl’ lFl’ lGl’ lHl’ lIl’ lJl’ lKl’ lLl’ lMl’ lNl’ lol’ lPl’ 'Q

MorseCode = (["SPACE",'.=-'",'—...", '"—. =", "= .'",) """, o=, =0, L0l

LI R R A | I R N | Tor_v I I | —_v v v S D IR N 1]
7 .

. ¥4 « T . - 7 e e o g 7 o o 7 o o o 14 . 14 o . 14 . 14
ProgramEnd = False
while not ProgramkEnd:

DisplayMenu ()

MenuOption = GetMenuOption ()

if MenuOption == 'R':
ReceiveMorseCode (Dash, Letter, Dot)

elif MenuOption == 'S':
SendMorseCode (MorseCode)

elif MenuOption == 'A':
OutputAlphabetWithCode (Letter, MorseCode)

elif MenuOption == 'X':

ProgramEnd = True

40

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

14

def SendMorseCode (MorseCode, Keys):
PlainText = input ("Enter your message (uppercase letters and spaces only)
PlainTextLength = len(PlainText)
MorseCodeString = EMPTYSTRING
for 1 in range (PlainTextLength) :
PlainTextLetter = PlainText[i]

if PlainTextLetter == SPACE:
Index = 0
else:
Index = ord(PlainTextLetter) - ord('A') + 1

Index = Index + Keys[i % 3]
while Index < O:
Index = Index + 27
while Index >= 27:
Index = Index - 27
CodedLetter = MorseCode[Index]
MorseCodeString = MorseCodeString + CodedLetter + SPACE
print (MorseCodeString)

def SendReceiveMessages|() :

bash = [20,23,0,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,0,22,13,0,0,10,0,0,0]
Dot = [5,18,0,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0]
Letter =

["SPACE"’ lAl’ lBl’ lCl’ lDl’ lEl’ lFl’ lGl’ lHl’ lIl’ lJl’ lKl’ lLl’ lMl’ lNl’ lol’ lPl’ 'Q

MorseCode = ["SPACE",'.=-','—...'", "=, =", "'"=..",". ', "..=-.", ytelaly,
|l |l - | " _ _ | _ \J \J \J v_ \J 1 \J 1 \J - v _ — v _ - V]
, Yy . P UL P s .. ;. ’ .. ’ . ’ ..

ProgramEnd = False

Keys = [0,0,0]

for i in range(3):
ValidDisplacement = False
while not ValidDisplacement:

try:
Displacement = int (input("Enter encryption key (integer): "))
ValidDisplacement = True
except:
pass
Keys[i] = Displacement

while not ProgramkEnd:

DisplayMenu ()
MenuOption = GetMenuOption ()
if MenuOption == 'R':
ReceiveMorseCode (Dash, Letter, Dot)
elif MenuOption == 'S':
SendMorseCode (MorseCode, Keys)
elif MenuOption == 'X':

ProgramEnd = True

41

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Alternative answer:
def SendMorseCode (MorseCode, Keyl, Key2, Key3):

PlainText = input ("Enter your message (uppercase letters and spaces only)
PlainTextLength = len(PlainText)
MorseCodeString = EMPTYSTRING
for 1 in range(PlainTextLength) :
PlainTextlLetter = PlainText[i]
if PlainTextLetter == SPACE:
Index = 0
else:
Index = ord(PlainTextlLetter) - ord('A') + 1
if i & 3 ==
Displacement = Keyl
elif i & 3 ==
Displacement = Key2
else:
Displacement = Key3
Index = Index + Displacement
while Index < O:
Index = Index + 27
while Index >= 27:
Index = Index - 27
CodedLetter = MorseCode[Index]

MorseCodeString = MorseCodeString + CodedLetter + SPACE
print (MorseCodeString)

def SendReceiveMessages () :

bash = [(20,23,0,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,0,22,13,0,0,10,0,0,0]1
Dot = [5,18,0,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0]
Letter =

["SPACE", IAI, IBI, ICI, lDl, IEI, IFI, IGI, IHI, III, lJl, IKI, lLl, IMI, INI, lol, IPI, IC

MorseCode = ["SPACE",'.=-','—...", "=, =", "= ", """, o=, ==, L0,

o LI | I R N | LA I R | T _v v v _v v _ __1
’

4 o_, - LI 4 e o o g 4 . o 4 e o o 4 . 4 o o 4 . 4

False

ProgramEnd

ValidDisplacement = False
while not ValidDisplacement:

try:
Keyl = int(input ("Enter encryption key (integer): "))
ValidDisplacement = True

except:
pass

ValidDisplacement = False
while not ValidDisplacement:

try:
Key2 = int(input("Enter encryption key (integer): "))
ValidDisplacement = True

except:
pass

ValidDisplacement = False

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

while not ValidDisplacement:
try:
Key3 = int(input("Enter encryption key (integer): "))
ValidDisplacement = True
except:
pass

while not ProgramEnd:

DisplayMenu ()
MenuOption = GetMenuOption ()
if MenuOption == 'R':
ReceiveMorseCode (Dash, Letter, Dot)
elif MenuOption == 'S':
SendMorseCode (MorseCode, Keyl, Key2, Key3)
elif MenuOption == 'X':

ProgramEnd = True

43

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Pasca
03 |1 |var 9
Number, c, k : Integer;
begin

Number := 0;
while (Number < 1) or (Number > 10) do
begin
write ('Enter a positive whole number: ') ;
readln (Number) ;
if Number > 10 then
writeln ('Number too large')
else
if Number < 1 then
writeln('Not a positive number.')
end;
c :=1;
for k := 0 to (Number - 1) do
begin
writeln(c) ;
c := (¢ * (Number - 1 - k)) div (k + 1);
end;
readln;
end.

44

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

11

Procedure SendMorseCode (MorseCode : Array of String);
var
PlainText, MorseCodeString, CodedLetter : String;
PlainTextLength, i, Index : Integer;
PlainTextLetter : Char;

begin
write ('Enter your message (uppercase letters and spaces
only): "),
readln (PlainText) ;
PlainTextLength := length(PlainText);
MorseCodeString := EMPTYSTRING;
for i := 1 to PlainTextLength do
begin
PlainTextLetter := PlainText[i];
if PlainTextLetter = SPACE then
Index := 0
else

if (PlainTextLetter >= 'A') and (PlainTextLetter <=
'Z') then

Index := ord(PlainTextLetter) - ord('A') + 1
else
begin
ReportError ('Invalid character entered');
Index := 0;
MorseCodeString := EMPTYSTRING;
break;
end;
CodedLetter := MorseCode[Index];
MorseCodeString := MorseCodeString + CodedLetter +
SPACE;
end;

writeln (MorseCodeString) ;
end;

45

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

12

Procedure SendSignals (MorseCodeString : String);
var
Transmission, SymbolString : String;
CodeStringLength, i : Integer;
Symbol : Char;
begin
Transmission := EMPTYSTRING;
CodeStringLength := length (MorseCodeString) ;
for i := 1 to CodeStringLength do
begin
Symbol := MorseCodeString[i];
if Symbol = '.' then
SymbolString := '= '
else
if Symbol = '-' then
SymbolString := '=== "'
else
if Symbol = SPACE then
SymbolString := SPACE + SPACE;
Transmission := Transmission + SymbolString;
end;
writeln (Transmission) ;
end;

46

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

13

Procedure OutputAlphabetWithCode (Letter : Array of Char; 6

MorseCode : Array of String);

var

Index : Integer;

begin
for Index
begin

write (Letter[Index], SPACE);
write (Format('%0:-6s', [MorseCode[Index]]))
if index mod 4 = 0 then

writeln;

end;
writeln;
end;

Procedure DisplayMenu() ;

begin
writeln;

writeln('Main Menu');
writeln ('========="');

writeln ('R

writeln ('S

writeln('A

writeln ('X

writeln;
end;

1l to 26 do

Receive Morse code');

Send Morse code');

Output alphabet with Morse code');
Exit program');

47

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

Procedure SendMorseCode (MorseCode : TStringArray; Keys : Array

of Integer);

var
PlainText, MorseCodeString, CodedLetter : String;

PlainTextLength, i, Index, Displacement : Integer;
PlainTextLetter : Char;

begin
write ('Enter your message (uppercase letters and spaces

only): ");
readln (PlainText) ;
PlainTextLength := length (PlainText) ;
MorseCodeString := EMPTYSTRING;
for 1 := 1 to PlainTextLength do
begin
PlainTextLetter := PlainText[i];
if PlainTextLetter = SPACE then
Index := 0
else
Index := ord(PlainTextLetter) - ord('A') + 1
Displacement := Keys[(i-1) mod 3];

Index := Index + Displacement;

48

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

while Index <0 do
Index := Index + 27;

while Index >= 27 do
Index := Index - 27;

CodedLetter := MorseCode[Index];

MorseCodeString := MorseCodeString + CodedLetter + SPACE;

end;
writeln (MorseCodeString) ;
end;

Procedure SendReceiveMessages|() ;
var

Dash: array[0..26] of Integer =
(20,23,0,0,24,1,0,17,0,21,0,25,0,15,11,0,0,0,0,22,13,0,0,10,0,0,
0);

Dot : array[0..26] of Integer =
(5,18,0,0,2,9,0,26,0,19,0,3,0,7,4,0,0,0,12,8,14,6,0,16,0,0,0) ;

Letter : arrayl[0..26] of Char = ('
V’VAV’VBV’VCV’VDV’VEV’VFV’VGV’VHV’VIV’VJV’VKV’VLV’VMV’VNV’VOV’VP
l,'Ql,'RV,ISI,VTI,VUI,'VV,IWI,VXI,VYI,IZV);

)) | | | |

MorseCode : arrayl[0..26] of String = (' ','.=-'",'"—-...","—-.-

LI | LN I R | LA
. .. . c e .

- 14 T .77 14 __"’);
ProgramEnd : Boolean;
MenuOption, Input : String;
Keys : array [0..2] of Integer = (0,0,0);
i, Error : Integer;
begin
ProgramEnd := False;
for i := 0 to 2 do
begin
write ('Enter encryption key (integer): ');
readln (Input) ;
val (Input,Keys[i] ,Error) ;
while Error <> 0 do
begin
write('Error - invalid input - please re-enter: ');
readln (Input) ;
val (Input,Keys[i] ,Error) ;
end;
end;

while not (ProgramEnd) do
begin

DisplayMenu () ;

MenuOption := GetMenuOption() ;

if MenuOption = 'R' then
ReceiveMorseCode (Dash, Letter, Dot)

else if MenuOption = 'S' then
SendMorseCode (MorseCode, Keys)

49

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

else if MenuOption = 'X' then
ProgramkEnd := True;
end;
end;

C#

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

03

static void Main(string[] args)
{
int Number = 0;
while (Number < 1 || Number > 10)
{
Console.Writeline ("Enter a positive whole number: ") ;
Number = Convert.ToInt32 (Console.ReadLine()) ;
if (Number > 10)
{
Console.Writeline ("Number too large.");

}

else
{
if (Number < 1)
{
Console.WritelLine ("Not a positive number.");
}

}
}
int ¢ = 1;
for (int k = 0; k < Number ; k++)
{
Console.WriteLine(c) ;
c = (c * (Number - 1 -k)) / (k + 1);
}

Console.ReadLine () ;

51

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

11

private static void SendMorseCode(string[] MorseCode)

{

Console.Write ("Enter your message (uppercase letters and
spaces only): ");

string PlainText = Console.ReadLine();

int PlainTextLength = PlainText.Length;

string MorseCodeString = EMPTYSTRING;

char PlainTextLetter = SPACE;

int Index = 0;

for (int i = 0; 1 < PlainTextLength; i++)

{

}

Console.WritelLine (MorseCodeString);

}

Alternative answer

spaces only): ");

PlainTextlLetter = PlainText[i];
if (PlainTextLetter == SPACE)
{
Index = 0;
}
else if (PlainTextlLetter >= 'A' && PlainTextlLetter <= 'Z')

{

Index = (int)PlainTextLetter - (int)'A' + 1;
}
else
{
ReportError ("Invalid character entered");
Index = 0;
MorseCodeString = EMPTYSTRING;
break;
}

string CodedLetter = MorseCode[Index];
MorseCodeString = MorseCodeString + CodedLetter + SPACE;

private static void SendMorseCode (string[] MorseCode)
{
bool Valid = true;
Console.Write ("Enter your message (uppercase letters and

string PlainText = Console.ReadLine();
int PlainTextLength = PlainText.Length;
string MorseCodeString = EMPTYSTRING;
char PlainTextLetter = ' ';
int Index = 0;
foreach (char Character in PlainText)
{
if (Character != SPACE)
{
if (Character < 'A' || Character > 'Z')
{
Valid = false;
MorseCodeString = EMPTYSTRING;

52

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

ReportError ("Invalid character entered") ;

break;
}
}
}
if (Valid)
{

for (int 1 = 0; i < PlainTextLength; i++)
{
PlainTextlLetter = PlainText[i];

if (PlainTextLetter == SPACE)
{
Index = 0;
}
else
{
Index = (int)PlainTextLetter - (int)'A' + 1;

}
string CodedLetter = MorseCode[Index];

MorseCodeString = MorseCodeString + CodedLetter +
SPACE;

}
}

Console.WriteLine (MorseCodeString) ;

}

53

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

private static void SendSignals(string MorseCodeString)
{
string Transmission
char Symbol;
string SymbolString = "";
int CodeStringLength = MorseCodeString.Length;
for (int i = 0; i < CodeStringLength; i++)

EMPTYSTRING;

{ Symbol = MorseCodeString[i];
if (Symbol == '."')
{ SymbolString = "= ";
ilse if (Symbol == '-"')
{ SymbolString = "=== ";

}
if (Symbol == SPACE)
{
SymbolString = SPACE.ToString() + SPACE.ToString()
}
Transmission = Transmission + SymbolString;
}

Console.WritelLine (Transmission) ;

}

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

13

private static void OutputAlphabetWithCode (char[] Letter,
string[] MorseCode)
{
for (int Ptr = 1; Ptr < 27; Ptr++)
{
Console.Write (Letter[Ptr]) ;
Console.Write (SPACE) ;
Console.Write("{0,-6}" ,MorseCode[Ptr]) ;
if (Ptr % 4 == 0)
{
Console.WriteLine() ;
}
}
}
private static void SendReceiveMessages ()
{
int[] Dash = new int[] { 20, 23, 0, 0, 24, 1, O
25, 0, 15, 11, O, O, O, O, 22, 13, 0O, O, 10, O, O
int[] Dot = new intf[] { 5, 18, 0, O, 2, 9, 0, 2
o, 7, 4, o, o0, 0, 12, 8, 14, o6, 0, 16, 0, 0, O
char[] Letter = new char[] { "SPACE", 'A', '
lFl’ lGl’ lHl’ lIl’ lJl’ lKl’ lLl’ lMl’ lNl’
'sv, 'T', 'u', V', 'W', 'X', 'Y', 'z' };
string[] MorseCode = new string[] { "™ ", ".=", "—-...", "—-.=-."

"w__ " " " " —_ " "w___ " " " " " " " " " " "
. o

, 17, 0, 21, O,
, 0 17

o, 0, 19, 0, 3,
}s

B', va,
lOl’ lPl’

'D'I
'Q'y

'E'[
lRl’

.« o o 7 .« r . . I4 . l4
bool ProgramkEnd = false;
string MenuOption = EMPTYSTRING;
while (!ProgramkEnd)
{
DisplayMenu () ;
GetMenuOption (ref MenuOption);
if (MenuOption == "R")
{
ReceiveMorseCode (Dash, Letter,
}
else if
{
SendMorseCode (MorseCode) ;
}
else if (MenuOption == "A")
{
OutputAlphabetWithCode (Letter, MorseCode) ;
}
else if
{
ProgramEnd = true;

}

Dot) ;

(MenuOption == "S")

(Menqution == "X")

55

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

private static void DisplayMenu ()
{
Console.WriteLine () ;
Console.WritelLine ("Main Menu") ;
Console.Writeline ("=========")_;
Console.WritelLine ("R - Receive Morse code");
Console.WriteLine ("S - Send Morse code");
Console.Writeline ("A - Output alphabet with Morse code");
Console.WritelLine ("X - Exit program");
Console.WritelLine () ;

56

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

private static void SendMorseCode (string[] MorseCode, int[]
Keys)
{

Console.Write ("Enter your message (uppercase letters and
spaces only): ");

string PlainText = Console.ReadLine();

int PlainTextLength = PlainText.Length;

string MorseCodeString = EMPTYSTRING;

char PlainTextLetter = ' ';

int Index = 0;

for (int 1 = 0; i < PlainTextLength; i++)

{

PlainTextLetter = PlainText[i];

if (PlainTextLetter == SPACE)
{
Index = 0;
}
else
{
Index = (int)PlainTextLetter - (int)'A' + 1;

}
Index = Index + Keys[i % 3];

while (Index < 0)

{

Index = Index + 27;
}
while (Index >=27)
{

Index = Index - 27;
}

string CodedLetter = MorseCode[Index];
MorseCodeString = MorseCodeString + CodedLetter + SPACE;
}
Console.Writeline (MorseCodeString) ;
}
private static void SendReceiveMessages ()

{

int[] Dash = new int[] { 20, 23, 0, 0, 24, 1, 0, 17, 0, 21, O,
25, 0, 15, 11, 0, 0, O, O, 22, 13, 0, 0, 10, 0O, 0, O };

int[] Dot = new int[] { 5, 18, 0, 0, 2, 9, 0, 26, 0, 19, 0, 3,
o, 7, 4, o, 0o, 0, 12, 8, 14, 6, 0, 16, 0, 0, O

’ }:
char[] Letter = new char[] { "SPACE", 'A', 'B', 'C', 'D', 'E',
1 I? 1 , 1 (; 1 , 1 E{ 1 , 1]: 1 , 1 kj‘l , 1 I< 1 , 1 IJ 1 , 1 D4 1 , 1 Iq 1 , 1 () 1 , 1 I? 1 , 1 Cg 1 , 1 E{ 1 ,
| ES | , | tE | , | [J | , | \]’l , | vq | , | }(| , | 3{ | , | 23 | } ;
string[] MorseCode = new stringl] { ™ ", ".-=-", "—...", "-.-.",

1A 1A 1A 1A " " " " " " " " " " " " " "
o o . o o . . e o o o o o . . . o o

o« o o 4 « 14 . . 14 . ’
bool ProgramkEnd = false;

string MenuOption = EMPTYSTRING;
int[] Keys = new int[3];

57

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

int Displacement = 0;

for (int i = 0; i < 3; i++)

{
bool ValidDisplacement = false;
while (!'ValidDisplacement)

{
Console.Write ("Enter encryption key (integer): ");
try
{
Displacement = Convert.ToInt32 (Console.ReadLine()) ;
ValidDisplacement = true;
}
catch (Exception)
{
}
}
Keys[i] = Displacement;
}
while (!ProgramEnd)

{
DisplayMenu() ;
GetMenuOption (ref MenuOption) ;
if (MenuOption == "R")
{
ReceiveMorseCode (Dash, Letter, Dot);
}
else if (MenuOption == "S")
{
SendMorseCode (MorseCode, Keys) ;
}
else if (MenuOption == "X")
{
ProgramEnd = true;

}

Alternative Answer:
private static void SendMorseCode (string[] MorseCode, int Keyl,
int Key2, int Key3)
{
Console.Write ("Enter your message (uppercase letters and
spaces only): ");
string PlainText = Console.ReadLine();
int PlainTextLength = PlainText.Length;
string MorseCodeString = EMPTYSTRING;
char PlainTextLetter = "' ';
int Index = 0;
int Displacement = 0;
for (int 1 = 0; i < PlainTextLength; i++)

58

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

PlainTextLetter = PlainText[i];

if (PlainTextLetter == SPACE)
{
Index = 0;
}
else
{
Index = (int)PlainTextLetter - (int)'A' + 1;

}
if (1 $ 3 == 0)

{

Displacement = Keyl;
}
else if (i % 3 == 1)
{

Displacement = Key2;
}
else
{

Displacement = Key3;
}

Index = Index + Displacement;
while (Index < 0)

{

Index = Index + 27;
}
while (Index >= 27)
{

Index = Index - 27;
}

string CodedLetter = MorseCode[Index];
MorseCodeString = MorseCodeString + CodedLetter + SPACE;
}

Console.Writeline (MorseCodeString);

}

private static void SendReceiveMessages ()

{

int[] Dash = new int[] { 20, 23, 0, 0, 24, 1, 0, 17, 0, 21, O,
25, 0, 15, 11, 0, 0, O, O, 22, 13, 0, 0, 10, 0, 0, O };

int[] Dot = new int[] { 5, 18, 0, 0, 2, 9, 0, 26, 0, 19, 0, 3,
o, 7, 4, 0, 0, 0, 12, 8, 14, 6, 0, 16, 0, 0, O

b
char[] Letter = new char[] { "SPACE", 'A', 'B', 'C', 'D', 'E',
| I? | , | C; | , | }{ | , |]: | , | ;I | , | I(| , | IJ | , | D4 | , | Iq | , | () | , | I? | , | Cg | , | E{ | ,
1 E; 1 , 1 jj 1 , 1 [J 1 , 1 \]’l , 1 Dq 1 , 1 }(1 , 1 3{ 1 , 1 EZ 1 } ;

string[] MorseCode = new stringl] { ™ ", ".-=-", "—...", "-.-.",

1A 1A " 1A " " " " " " " " " " " " " "
o o . o o . . e o o o o o . . . o o

.« o o 7 .« ’ . . I4 . l4
bool ProgramkEnd = false;

59

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

string MenuOption = EMPTYSTRING;
int Keyl = 0, Key2 = 0, Key3 = 0;
bool ValidDisplacement = false;
while (!'ValidDisplacement)

{

Console.Write ("Enter encryption key (integer):

try

{
Keyl = Convert.ToInt32 (Console.ReadLine()) ;
ValidDisplacement = true;

}

catch (Exception)

{

}

}

ValidDisplacement = false;
while (!'ValidDisplacement)

{

Console.Write ("Enter encryption key (integer):

try

{
Key2 = Convert.ToInt32 (Console.ReadLine()) ;
ValidDisplacement = true;

}

catch (Exception)

{

}

}

ValidDisplacement = false;
while (!'ValidDisplacement)

{

Console.Write ("Enter encryption key (integer) :

try

{
Key3 = Convert.ToInt32 (Console.ReadLine());
ValidDisplacement = true;

}

catch (Exception)

{

}

}

while (!ProgramEnd)

{
DisplayMenu () ;
GetMenuOption (ref MenuOption);
if (MenuOption == "R")

{

ReceiveMorseCode (Dash, Letter, Dot);

}
else if (MenuOption == "S")

{

")’.

")

");

60

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

SendMorseCode (MorseCode, Keyl, Key2, Key3);
}
else 1if (MenuOption == "X")
{
ProgramkEnd = true;
}
}
}

61

Java

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

03

int number = 0;
while (number < 1 || number > 10)
{
Console.writeline(("Enter a positive whole number: ")) ;

number = Integer.parselInt(Console.readLine())
if (number > 10)
{
Console.writeline ("Number too large") ;
}
else if (number < 1)
{
Console.writeLine ("Not a positive number") ;
}
}
int ¢ =1;
for (int k = 0; k < number; k++)
{
Console.write(c + " ");
c = (c * (number - 1 - k) / (k + 1));
}

62

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

11

void sendMorseCode (String[] morseCode) 4
{

Console.write ("Enter your message (uppercase letters and

spaces only): ");

String plainText = Console.readLine();

int plainTextLength = plainText.length();

String morseCodeString = EMPTYSTRING;

int index;

for (int i = 0; 1 < plainTextLength; i++)

{

char plainTextLetter = plainText.charAt (i)

if (plainTextlLetter == SPACE)
{
index = 0;
}
else
{
index = (int)plainTextletter - (int)'A' + 1;

}
if (index >= 0 && index <= 26)
{
String codedLetter = morseCode[index];
morseCodeString = morseCodeString + codedLetter +
SPACE;
}
else
{
morseCodeString = EMPTYSTRING;
break;
}
}
if (morseCodeString != EMPTYSTRING)

{

Console.writeline (morseCodeString);

}

else

{

reportError ("Invalid character entered") ;

}

63

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

12

{

}

void sendSignals (String morseCodeString)

int morseCodelength = morseCodeString.length() ;
String signalString = EMPTYSTRING;
for(int i = 0; i < morseCodeLength; i++)

{

}

Console.writeLine (signalString) ;

if (morseCodeString.charAt (i) == "'.")

{ signalString = signalString + "=" + SPACE;
ilse if (morseCodeString.charAt(i) == '-")

{ signalString = signalString "===" + SPACE;
ilse if (morseCodeString.charAt (i) == SPACE)

{
signalString = signalString + SPACE + SPACE;
}

64

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

13

void outputAlphabetWithCode (char[] letter, String[] morseCode)

{
int counter = 0;
for(int i = 1; i < 27; i++)
{
if (counter%4==0)
{
Console.writeLine () ;
}
Console.write (letter[i] + " ");
Console.write (String.format("%-6s", morseCode[i])) ;
counter++;
}
}

void displayMenu ()
{

Console.
Console.
Console.
.writelLine ("A -
Console.
Console.
Console.
Console.

Console

}

writeLine () ;
writelLine ("Mai
writeLine ("===

writelLine ("R -
writeLine ("S -
writelLine ("X -
writeLine () ;

n Menu");
======") ;

Output the alphabet with code") ;
Receive Morse code");

Send Morse code");

Exit program");

void sendReceiveMessages ()

{

int[] dash = { 20, 23, 0, O, 24, 1, 0, 17, O, 21, 0, 25, 0, 15,
i1, o0, 0, 0, 0, 22, 13, 0, 0, 10, 0O, 0O, O };

int[] dot = { 5, 18, 0, 0O, 2, 9, 0, 26, O, 19, 0, 3, 0, 7,
4, 0, 0, 0, 12, 8, 14, 6, 0, 16, 0, 0, O };

char[] letter = { "SPACE", 'A', 'B', 'C', 'D', 'E', 'F',
lGl’ lHl’ lIl’ lJl’ lKl’ lLl’ lMl’ lNl’ lOl’ lPl’ lQl’ lRl’
‘tt, '‘ut, v, 'w', 'X', 'y', 'z2' };

String[] morseCode = { "SPACE + """, " =", "—_ _. ", "— -.",
"_°°"I "-"l "°°_'"I "-- "I " "I " "I " ___"r " _"r ".o- "
"__"/ "— "/ "___"r "= "r "__-_"r " _-"r " "r " "r " _"r
". _"/ " __"/ "_--_"r "_-__"r "-- " }r

boolean programkEnd = false;
while (!programknd)
{

displayMenu() ;

char menuOption = getMenuOption();

if (menuOption == 'R'")

{

receiveMorseCode (dash, letter, dot);
}
else if (menuOption == 'S'")

{

sendMorseCode (morseCode) ;

}

lSl’

65

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

}

}

else if (menuOption == 'A')
{

outputAlphabetWithCode (letter, morseCode) ;
}

else 1if (menuOption == 'X'")
{

programkEnd = true;

}

66

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

14

void sendReceiveMessages ()

{

int[] keys

new int[3];

for (int i = 1; i < 4; i++)

{

{
try
{
Console.write ("Enter key number " + i + ": ")
keys[i-1l] = Integer.parselInt(Console.readLine())
validNumber = true;
}
catch (Exception e)
{
reportError ("Only enter integers") ;
}
}
}
int[] dash = { 20, 23, 0, 0, 24, 1, 0, 17, 0, 21, 0, 25,
15, 11, 0, O, 0O, O, 22, 13, 0, 0O, 10, O, O, O };
int[] dot = { 5, 18, 0, O, 2, 9, 0, 26, 0O, 19, 0, 3, 0,
o, 0, o, 12, 8, 14, o, 0, 16, 0, 0, O };
char[] letter = { "SPACE", 'A', 'B', 'C', 'D', 'E', 'F',
'g', '1', 'Jg', 'k', 'n', '™m', '~N', 'o', 'p', 'Q', 'R', 'S"',
lUl’ lVl’ lwl’ le’ lYl’ lZl },.
String[] morseCode = { "SPACE + """, " =", 6 "— . ", "—- -

boolean validNumber = false;
while (!validNumber)

" " " — " " " " " " " " " " "
. o o . . o o o . .

__n "_ _n w_ __mn " " .
. .. ’

boolean programEnd = false;

while (!programEnd)

{

displayMenu () ;

char menuOption = getMenuOption();

if (menuOption == 'R'")

{ receiveMorseCode (dash, letter, dot);

;lse if (menuOption == 'S'")

{ sendMorseCode (morseCode, keys) ;

;lse if (menuOption == 'A'")

{ outputAlphabetWithCode (letter, morseCode);
;lse if (menuOption == 'X'")

{

T, 4,

|G|,

lTl’

67

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

programkEnd = true;
}
}
}
void sendMorseCode (String[] morseCode, int [] keys)
{
Console.writelLine ("Enter your message (uppercase letters and
spaces only): ");
String plainText = Console.readLine();
int plainTextLength = plainText.length();
String morseCodeString = EMPTYSTRING;
int index;
int keyNumber = 0;
for (int 1 = 0; i < plainTextLength; i++)
{
char plainTextLetter = plainText.charAt (i)

if (plainTextLetter == SPACE)
{
index = 0;
}
else
{
index = (int)plainTextLetter - (int)'A' + 1;

}
index += keys|[keyNumber] ;
keyNumber++;
if (keyNumber == 3)
{
keyNumber = 0;
}
if (index > 26)
{
index = index - 27;
}
else if(index < 0)
{
index = index + 27;
}
if (index >= 0 && index <= 26)
{
String codedLetter = morseCode[index];
morseCodeString = morseCodeString + codedLetter + SPACE;
}
else
{
morseCodeString = EMPTYSTRING;
break;

}

if (morseCodeString != EMPTYSTRING)

68

MARK SCHEME — AS COMPUTER SCIENCE - 7516/1 — JUNE 2018

}

{

Console.writelLine (morseCodeString);

}
else
{

reportError ("Enter only space or uppercase letters");

}

sendSignals (morseCodeString) ;

69

