| Please write clearly in | า block capitals. | |-------------------------|--------------------------------| | Centre number | Candidate number | | Surname | | | Forename(s) | | | Candidate signature | I declare this is my own work. | # GCSE CHEMISTRY H Foundation Tier Paper 2 Time allowed: 1 hour 45 minutes #### **Materials** For this paper you must have: - a ruler - · a scientific calculator - the periodic table (enclosed) #### **Instructions** - Use black ink or black ball-point pen. - · Pencil should only be used for drawing. - Fill in the boxes at the top of this page. - Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages. - If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). - Do all rough work in this book. Cross through any work you do not want to be marked. - In all calculations, show clearly how you work out your answer. ### Information - The maximum mark for this paper is 100. - The marks for questions are shown in brackets. - You are expected to use a calculator where appropriate. - You are reminded of the need for good English and clear presentation in your answers. | For Examiner's Use | | |--------------------|------| | Question | Mark | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | 10 | | | TOTAL | i e | | 0 1 | | This question is abou | it the Earth's atmosphere. | | | |-----|-------------------------------|--|---------------------------------------|--------------------------|----------| | 0 1 | . 1 | How long ago was the | e Earth formed? | | [1 mark] | | | | Tick (✓) one box. | | | [| | | | 4.6 billion years ago | | | | | | | 4.6 million years ago | | | | | | | 4.6 thousand years a | go | | | | | | Earth today. | ercentages of gases in the a | aunospheres of Mars and | | | | | | | | | | | Gas | | Percentage of ga | s in atmosphere (%) | | | | Gas | | Percentage of ga | s in atmosphere (%) | | | | | on dioxide | | | | | | | | Mars | Earth | | | | Carb | gen | Mars
95.97 | Earth 0.04 | | | | Carb
Nitro | gen | Mars
95.97
1.89 | Earth 0.04 78.09 | | | 0 1 | Carb
Nitro | gen
gen
er gases | Mars
95.97
1.89
0.15 | Earth 0.04 78.09 20.95 X | [1 mark] | | 0 1 | Carb
Nitro
Oxyg
Othe | gen gen er gases Calculate the percent | Mars
95.97
1.89
0.15
1.99 | Earth 0.04 78.09 20.95 X | [1 mark] | Do not write outside the box | | The atmosphere of the early Earth is thought to have been similar to the atmosphere of Mars today. | | mosphere | |-------|--|-------------------------------------|-----------| | | The percentages of nitrogen and of oxychanged from the percentages in the E | | y have | | 0 1.3 | Draw one line from each gas to the cha | ange in the percentage of that gas. | | | | Use Table 1 . | | [2 marks] | | | Gas | Change in percentage of gas | [2 marks] | | | | Increased by about 4 times | | | | Nitrogen | Increased by about 21% | | | | | Increased by about 40 times | | | | Oxygen | Increased by about 96% | | | | | | | | | | | | | 0 1.4 | The percentage of carbon dioxide in th | e Earth's early atmosphere decrease | ed. | | | Which two processes caused this decr | rease? | 10 | | | Tick (✓) two boxes. | | [2 marks] | | | Carbon dioxide dissolving in sea water | | | | | Combustion of fossil fuels | | | | | Farming of animals | | | | | Formation of sedimentary rocks | | | | | Volcanoes releasing carbon dioxide | | | | 0 1.5 | Photosynthesis also decreased the percentage of carbon dioxide in the Earth's early atmosphere. | 0 | |-------|---|---| | | Photosynthesis increased the percentage of another gas. | | | | Complete the word equation for photosynthesis. [2 marks] | | | | + water → glucose + | | | 0 1.6 | Complete the sentence. [1 mark] | | | | Scientists are not certain about the percentages of gases in the Earth's early | | | | atmosphere because there is a lack of | | | | | | | | | | | 0 2 | This question is about water. | |---------|--| | | A student investigated the concentration of salt in sea water. | | | This is the method used. | | | 1. Filter the sea water to remove sand. | | | 2. Measure the mass of an empty evaporating dish. | | | 3. Measure 50 cm³ of sea water into the evaporating dish. | | | 4. Heat the evaporating dish and sea water. | | | 5. Evaporate the sea water to dryness. | | | 6. Measure the mass of the evaporating dish and salt. | | | | | 0 2 . 1 | What equipment should the student use to measure: | | | the mass of the evaporating dish | | | the volume of sea water? | | | | | | [2 marks] | | | [2 marks] Mass of evaporating dish | | | | | | Mass of evaporating dish 0 2 . 2 Table 2 shows the student's res | ults | |---|------| |---|------| #### Table 2 | | Mass in g | |---------------------------|-----------| | Evaporating dish | 30.44 | | Evaporating dish and salt | 30.49 | The student used 50 cm³ of sea water. Calculate the mass of salt in 1000 cm³ of this sea water. [3 marks] Mass of salt = The salt must be completely dry. Which two extra steps are needed to show that the salt is completely dry? [2 marks] Tick (✓) **two** boxes. Filter the sea water again. Heat the evaporating dish and salt again. Measure the 50 cm³ of sea water again. Measure the mass of the empty evaporating dish again. Measure the mass of the evaporating dish and salt again. Two students, Y and Z, distil sea water to collect water. Figure 1 shows the apparatus used by each student to collect the water. Figure 1 | 0 2 . 4 | Students Y and Z boil the same volume of sea water for the same period of | f time. | |---------|---|-----------| | | Explain why student Y collects a smaller volume of water than student Z . | [2 marks] | | | | | | | | | | | | | | 0 2 . 5 | Water obtained by distillation does not need to be sterilised and is safe to | drink. | | | Suggest why. | [1 mark] | | | | | | | | | | | Fresh water needs to be sterilised before it is safe to drink. | Do not write outside the box | |-------|---|------------------------------| | 0 2.6 | How is fresh water sterilised? | | | | Tick (✓) two boxes. [2 marks] | | | | Using ammonia | | | | Using chlorine | | | | Using chromatography | | | | Using filtration | | | | Using ozone | | | | | | | 0 2.7 | A student tests the pH of fresh water using universal indicator solution. | | | | When added to the fresh water, the colour of the universal indicator solution is green. | | | | What is the pH of this fresh water? [1 mark] | | | | pH = | 13 | | | μιι – | | | | | | | | | | | | Turn over for the next question | Do not write outside the 0 3 This question is about substances used to make windows and window frames. Figure 2 shows a window. Figure 2 Frame Glass 0 3 . Glass is made by heating sand with ${f two}$ other materials. Which two other materials are used to make glass? [2 marks] Tick (✓) two boxes. Clay Graphite Limestone Sodium carbonate Sodium hydroxide Window frames need to be: - easy to install - resistant to damage. The polymers poly(chloroethene) and HDPE are used to make window frames. **Table 3** shows information about poly(chloroethene) and HDPE. Table 3 | Property | Poly(chloroethene) | HDPE | |------------------------------|--------------------|------| | Density in g/cm ³ | 1.4 | 0.92 | | Relative strength | 72 | 25 | | 0 3.2 | Suggest one advantage of using poly(chloroethene) compared with HDPE to make window frames. | |-------|--| | | Give one reason for your answer. | | | Use Table 3 . [2 marks] | | | Advantage | | | Reason | | 0 3.3 | Suggest one advantage of using HDPE compared with poly(chloroethene) to make window frames. | | | Give one reason for your answer. Use Table 3 . | | | [2 marks] | | | Advantage | | | Reason | | | | 0 3.4 Figure 3 shows the displayed structural formula of poly(chloroethene). Figure 3 $$\begin{pmatrix} H & Cl \\ | & | \\ C - C \\ | & | \\ H & H \end{pmatrix}$$ Which monomer is used to make poly(chloroethene)? [1 mark] Tick (✓) one box. $$\begin{matrix} H & Cl \\ | & | \\ C = C \\ | & | \\ H & H \end{matrix}$$ | ı | | | | |---|--|--|--| | ı | | | | | ı | | | | | ı | | | | | | | | | | | | Do not write | |---------|---|-----------------| | 0 3.5 | Chlorine gas is used to produce poly(chloroethene). | outside the box | | | Describe a test to identify chlorine gas. | | | | Give the result of the test. | | | | [2 marks] | | | | Test | | | | | | | | Result | | | | | | | | | | | | | | | 0 3 . 6 | Wood can be used instead of polymers to make window frames. | | | | Polymers are unreactive. | | | | Polymers are produced from crude oil. | | | | Wood breaks down in wet conditions. | | | | Wood is produced from trees. | | | | Suggest one advantage of using polymers and one advantage of using wood to make | | | | window frames. [2 marks] | | | | Advantage of polymers | | | | Advantage of wood | | | | Question 3 continues on the next page | | Window frames can also be made from an alloy of aluminium. **0 3**. **7** 6.00 kg of the alloy is used to make a window frame. **Table 4** shows the mass of each element in 6.00 kg of the alloy. Table 4 | Element | Mass in kg | |-----------|------------| | Aluminium | 5.94 | | Magnesium | 0.04 | | Silicon | 0.02 | | | Calculate the percentage of aluminium in 6.00 kg of the alloy. | [2 marks] | | |-------|---|-----------|--| | | Percentage of aluminium = | % | | | 0 3.8 | Why is an alloy used instead of pure aluminium to make window frames? | [1 mark] | | | | | | | | | This guardier is about reactions between gazes | Do not write outside the box | |----------|--|------------------------------| | 0 4 | This question is about reactions between gases. | JOA | | | When hydrogen gas is heated with iodine gas, hydrogen iodide gas is produced. | | | | The equation for this reversible reaction is: | | | | hydrogen + iodine | | | | | | | | This reversible reaction reaches equilibrium in a sealed container. | | | 0 4 . 1 | How does the equation show that the reaction is reversible? | | | <u> </u> | [1 mark] | | | | | | | | | | | | | | | 0 4 . 2 | Which two statements are correct when the reaction reaches equilibrium? | | | | . [2 marks] Tick (✓) two boxes. | | | | | | | | The forward reaction and reverse reaction are both exothermic. | | | | The gases have escaped from the container. | | | | | | | | The hydrogen no longer reacts with iodine. | | | | The mass of each substance does not change. | | | | The rates of the forward reaction and reverse reaction are equal. | | | | The fates of the forward redotton and reverse redotton are equal. | · · · · · · · · · · · · · · · · · · · | 1 | | 0 4 . 3 | The initial mixture of hydrogen and iodine in the sealed container is purple. | Do not write outside the box | |---------------|--|------------------------------| | | Hydrogen iodide is colourless. | | | | How will the colour of the mixture in the sealed container have changed when equilibrium is reached? | | | | Tick (✓) one box. [1 mark] | | | | The mixture will have become a deeper purple. | | | | The mixture will have become a paler purple. | | | | The mixture will have become colourless. | | | | | | | 0 4.4 | The rate of reaction between gases is affected by changing the pressure. | | | | Complete the sentences. [3 marks] | | | | When the pressure of the reacting gases is increased, | | | | the rate of reaction | | | | This is because at higher pressures the distance | | | | between the particles | | | | This means that the frequency of collisions | | | | | | | 0 4 . 5 | Give one other way of changing the rate of reaction between gases. | | | | You should not refer to pressure in your answer. [1 mark] | | | | | 8 | | | | | 0 5 A student investigated the rate of the reaction between zinc and sulfuric acid. This is the method used. - 1. Pour 40 cm³ of sulfuric acid into a conical flask. - 2. Add 2.0 g of zinc powder to the conical flask. - 3. Put the stopper in the conical flask. - 4. Measure the volume of hydrogen gas collected every 30 seconds for 5 minutes. Figure 4 shows part of the apparatus used. Figure 4 | | | | _ | |---------|--|-----------|------------------------------------| | 0 5 . 1 | X shows where a piece of equipment is connected to measure the volume of hydrogen gas collected. | | Do not write
outside the
box | | | Complete Figure 4 to show the equipment used. | [1 mark] | | | 0 5 . 2 | The student made an error setting up the delivery tube shown in Figure 4 . Describe the error and the problem this error would cause. | [2 marks] | | | | Error made | | | | | Problem caused | | | Question 5 continues on the next page The student then set up the apparatus correctly. Figure 5 shows the student's results. Figure 5 0 5. 3 Complete **Figure 5** by drawing a line of best fit. [1 mark] | 0 5.4 | Determine the mean rate of reaction between 0 seconds and 60 seconds. | | outside th | |---------|--|------------|------------| | | Use the equation: | | | | | mean rate of reaction = $\frac{\text{volume of gas formed}}{\text{time taken}}$ | | | | | Use data from Figure 5 . | | | | | Give the unit. | | | | | Choose the answer from the box. | [4 marks] | | | | cm ³ /s g/s s/cm ³ s/g | | | | | | 1 | | | | | | | | | | | | | | | | | | | Mean rate of reaction = Unit | | | | 0 5 . 5 | The student repeated the investigation using sulfuric acid of a higher conce | entration. | | | | The student plotted the results and drew a line of best fit. | | | | | How would the line of best fit for higher concentration compare with the line for lower concentration? | | | | | Tick (✓) one box. | [1 mark] | | | | The line of best fit for higher concentration would have a less steep slope. | | | | | The line of best fit for higher concentration would have a steeper slope. | | | | | The lines of best fit would have slopes with the same steepness. | | 9 | | | | | | | 0 6 | Potash alum is a chemical compound. | | Do not writ
outside the
box | |---------|---|-------------------------------|-----------------------------------| | | Potash alum contains potassium ions, alumin | ium ions and sulfate ions. | | | 0 6 . 1 | Which two methods can be used to identify the in potash alum solution? Tick (✓) two boxes. | ne presence of potassium ions | [2 marks] | | | Flame emission spectroscopy | | | | | Flame test | | | | | Measuring boiling point of solution | | | | | Paper chromatography | | | | | Using litmus paper | | | | 06.2 | Sodium hydroxide solution is used to test for a Sodium hydroxide solution is added to a solut precipitate forms. Complete the sentence. Choose the answer from the box. | | [1 mark] | | | blue brown g | reen white | | | | | | | | 0 6 . 3 | Complete the sentence. | | Do not write outside the box | |---------|---|-----------|------------------------------| | | Choose the answer from the box. | [1 mark] | | | | barium chloride solution limewater | | | | | red litmus paper silver nitrate solution | | | | | Sulfate ions can be identified using dilute hydrochloric acid and | | | | | | | | | 0 6 . 4 | A solution of potash alum has a concentration of 258 g/dm³ Calculate the mass of potash alum needed to make 800 cm³ of a solution of | | | | | potash alum with a concentration of 258 g/dm ³ Give your answer to 3 significant figures. | [4 marks] | | | | | | | | | | | | | | | | | | | Mass (3 significant figures) = | g | 8 | | 0 7 | This question is about org | ganic compounds. | | | Do not write
outside the
box | |---------|---|-------------------------|------------------|----------|------------------------------------| | 07.1 | Butane is an alkane with Complete the sentence. | small molecules. | | | | | | Choose the answer from | the box. | | [1 mark] | | | | fertiliser | formulation | fuel | | | | | Butane can be used as a | | | | | | | | | | | | | 0 7 . 2 | Poly(propene) is a polym | er. | | | | | | What is the name of the r | monomer used to produce | e poly(propene)? | [1 mark] | | | | Tick (✓) one box. | | | | | | | Propane | | | | | | | Propanoic acid | | | | | | | Propanol | | | | | | | Propene | Ethene and steam react to produce ethanol. | | | |-------|---|--|--| | | The equation for the reversible reaction is: | | | | | ethene + steam ⇌ ethanol | | | | 0 7.3 | The reaction produces a maximum theoretical mass of 400 kg of ethanol from 243 kg of ethene and 157 kg of steam. | | | | | A company produces 380 kg of ethanol from 243 kg of ethene and 157 kg of steam. | | | | | The percentage yield of ethanol is less than 100% | | | | | Calculate the percentage yield of ethanol. | | | | | Use the equation: | | | | | percentage yield of ethanol = $\frac{\text{mass of ethanol actually made}}{\text{maximum theoretical mass of ethanol}} \times 100$ | | | | | [2 marks] | Percentage yield =% | | | | | Percentage yield =% | | | | 0 7.4 | What are two possible reasons why the percentage yield of ethanol is less than 100%? | | | | 0 7.4 | What are two possible reasons why the percentage yield of ethanol is less | | | | 0 7.4 | What are two possible reasons why the percentage yield of ethanol is less than 100%? [2 marks] | | | | 0 7.4 | What are two possible reasons why the percentage yield of ethanol is less than 100%? [2 marks] Tick (✓) two boxes. | | | | 0 7.4 | What are two possible reasons why the percentage yield of ethanol is less than 100%? [2 marks] Tick (✓) two boxes. Ethanol is the only product of the reaction. | | | | 0 7.4 | What are two possible reasons why the percentage yield of ethanol is less than 100%? [2 marks] Tick (✓) two boxes. Ethanol is the only product of the reaction. | | | | 0 | 7 | 5 | Ethanol burns in oxygen | |---|---|---|-------------------------| Balance the equation for the reaction. [1 mark] $$C_2H_5OH \ + \underline{\hspace{1cm}} O_2 \ \to \ 3\,H_2O \ + \ 2\,CO_2$$ - 0 7.6 Two processes for producing ethanol are: - fermentation - hydration (reacting ethene with steam). Table 5 shows information about the processes. Table 5 | Feature | Process | | | |-------------------|--------------|-----------|--| | reature | Fermentation | Hydration | | | Raw material | sugar | crude oil | | | Energy usage | low | high | | | Rate of reaction | slow | fast | | | Purity of ethanol | 15% | 98% | | | Give two advantages | and two disadvan | tages of using fe | rmentation to | |----------------------------|-------------------------|-------------------|---------------| | produce ethanol. | | | | [4 marks] | | [| |--------------------------------|---| | Advantage of fermentation 1 | | | Advantage of fermentation 2 | | | Disadvantage of fermentation 1 | | | Disadvantage of fermentation 2 | | 11 0 8 This question is about fuels and energy. Figure 6 shows the percentage of electricity generated in the UK between 2007 and 2017 using: - oil - solar energy. Figure 6 0 8 Describe the changes in the percentage of electricity generated in the UK between 2007 and 2017 using: - oil - solar energy. Use data from Figure 6 in your answer | ose data from Figure 6 in your answer. | [3 marks] | |--|-----------| 0 8.2 | Oil contains carbon and some sulfur. | Do not write
outside the
box | |-------|--|------------------------------------| | | When oil is burned, the products of combustion may be released into the atmosphere. | | | | Explain the environmental effects of releasing these products of combustion into the atmosphere. | | | | [6 marks] | 0 8.3 | Suggest one reason why using solar energy is a more sustainable way of gelectricity than burning oil. | | outside the | |--|--|------------|-------------| | | | | | | 0 8 . 4 | Solar energy may not be able to replace the generation of electricity from | | | | V | fossil fuels completely. Suggest two reasons why. | [2 moules] | | | | 1 | [2 marks] | | | | 2 | | 12 | Turn over for the next question 0 9 This question is about alkanes. **Table 6** shows information about some alkanes. Table 6 | Number of carbon atoms in alkane molecule | Boiling point of alkane
in °C | |---|----------------------------------| | 4 | 0 | | 5 | 36 | | 6 | 69 | | 7 | x | | 8 | 126 | | 9 | 151 | 0 9 . 1 Plot the data from Table 6 on Figure 7. [2 marks] | 0 9.2 | Predict the boiling point X of the alkane with seven carbon atoms in a molecule. | Do not write outside the box | |---------|---|------------------------------| | | Use Table 6 and Figure 7 . [1 mark] | | | | X =°C | | | 0 9.3 | Figure 7 is not suitable to show the boiling point of the alkane with three carbon atoms in a molecule. | | | | Suggest one reason why. [1 mark] | | | | | | | | | | | 0 9 . 4 | What is the state at 20 °C of the alkane with four carbon atoms in a molecule? Use Table 6 . | | | | [1 mark] | | | | | | | | | | | | Question 9 continues on the next page | | | | | | | | | | | | | | Table 6 is repeated below. Table 6 | Number of carbon atoms in alkane molecule | Boiling point of alkane
in °C | |---|----------------------------------| | 4 | 0 | | 5 | 36 | | 6 | 69 | | 7 | x | | 8 | 126 | | 9 | 151 | The alkane with nine carbon atoms in a molecule is called nonane. | 0 9 . 5 | Complete the formula of nonane. | [1 mark] | |---------|--|-----------| | | C ₉ H | | | 0 9.6 | Nonane will condense lower in a fractionating column during fractional distil than the other alkanes in Table 6 . | lation | | | Explain why. | | | | You should refer to the temperature gradient in the fractionating column. | [2 marks] | | | | | | | | | 8 Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED | 1 0 | This question is about paper chromatography. | Do not write outside the box | |------|---|------------------------------| | | A food colouring contains a dye. | | | 10.1 | Plan an investigation to determine the $R_{\mbox{\scriptsize f}}$ value for the dye in this food colouring. | | | | $R_{f} = \frac{\text{distance moved by substance}}{\text{distance moved by solvent}}$ | | | | Your plan should include the use of: | | | | • a beaker | | | | • a solvent | | | | chromatography paper. | | | | [6 marks] | 1 0 . 2 | Two students investigated a dye in a food colouring using paper chromatography. | Do not write outside the box | |---------|---|------------------------------| | | Each student did the investigation differently. | | | | The R _f values they determined for the same dye were different. | | | | How did the students' investigations differ? | | | | Tick (✓) one box. | | | | Different length of paper used | | | | Different period of time used | | | | Different size of beaker used | | | | Different solvent used | | | | | | | 1 0 . 3 | Paper chromatography involves a stationary phase. | | | | What is the stationary phase in paper chromatography? [1 mark] | | | | Tick (✓) one box. | | | | Beaker | | | | Dye | | | | Paper | | | | Solvent | 8 | | | | | | | END OF QUESTIONS | | | Question
number | Additional page, if required.
Write the question numbers in the left-hand margin. | |--------------------|--| Question
number | Additional page, if required.
Write the question numbers in the left-hand margin. | |--------------------|--| Question number | Additional page, if required.
Write the question numbers in the left-hand margin. | |-----------------|--| Do not write outside the There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED ## Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. Copyright © 2021 AQA and its licensors. All rights reserved. IB/M/Jun21/8462/2F