

GCSE MATHEMATICS 8300/1H

Higher Tier Paper 1 Non-Calculator

Mark scheme

June 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Commer	nts
1	9	B1		
2	2 7 9	B1		
3	6π	B1		
4	37 8	B1		
	9.7 × 10 ⁻⁴	B1		
	Add	ditional G	Guidance	
5(a)	Condone 9.7 . 10 ⁻⁴ or 9.7 · 10 ⁻⁴			B1
	Ignore zeroes before the '9' eg 00009.7×10^{-4}			B1
	9.7 × 10 ^{4–}			В0

Question	Answer	Mark	Commer	nts
	300 000 and 4000 or $(10^5 \div 10^3 =) 10^2$ or $(10^5 \div 10^3 =) 100$ or $7.5 \times 10^{(1)} \text{ or } 75 \times 10^0$ or $\frac{3 \times 10^2}{4} \text{ or } \frac{300}{4}$	M1		
	75	A1		
	Add	ditional G	uidance	
5(b)	If the answer is given in standard form and as 75 the student must indicate that 75 is their chosen answer or it must be the final answer given eg1 $7.5 \times 10^{(1)} = 75$ on the answer line eg2 $75 = 7.5 \times 10^{(1)}$ on the answer line		M1A1 M1A0	
	300 or 75 from incorrect working scores zero			
	eg1 $3 \times 10^5 = 30000$ and $4 \times 10^3 = 40^3$	100 and 3	$0000 \div 400 = \frac{300}{4} = 75$	M0A0
	$eg2 \frac{30000}{400} = 75$			MOAO
	For the method mark, ignore incorrect work from a correct expression eg $0.75 \times 10^2 = 7.5 \times 10^3$		M1A0	
	If the student attempts two methods (attempting to convert to ordinary num award the higher mark			

Question	Answer	Mark	Commer	nts
6(a)	$\frac{1}{6}$ on '1' and $\frac{1}{3}$ or $\frac{2}{6}$ on '2 or 3' and $\frac{1}{2}$ on each of 'Odd' and 'Even'	B2	oe fraction, decimal or possible of the second of the sec	on '2 or 3' 'Even' robabilities with
	Add			
	Accept decimals or percentages roun least 2 significant figures	ded or tru	incated correctly to at	
	Only withhold a mark for simplification awarded	n errors if	B2 would otherwise be	
	Ignore extra branches added			
	Ignore attempts to work out combined probabilities to the right of the tree diagram			
	If an answer line is blank, the student elsewhere on the branch	may have	e written their answer	

Question	Answer	Mark	Comments	
	Alternative method 1: P(1) + P(4, 5	or 6) × P	(Odd)	
	$\frac{1}{2}$ × their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe	
	their $\frac{1}{4}$ + their $\frac{1}{6}$	M1dep	oe	
	$(P(win) =) \frac{10}{24} \text{ or } \frac{5}{12}$	A1ft	oe ft their tree diagram	
	Lose (and P(Lose) = $\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored	
6(b)	Alternative method 2: 1 – P(2 or 3) – P(4, 5 or 6) × P(Even)			
	$\frac{1}{2}$ × their $\frac{1}{2}$ or $\frac{1}{4}$	M1	oe	
	their $\frac{1}{4}$ + their $\frac{1}{3}$		oe	
	or $P(lose) = \frac{7}{12}$	M1dep	ft their tree diagram	
	$(P(win) =) \frac{10}{24} \text{ or } \frac{5}{12}$	A1ft	oe ft their tree diagram	
	Lose (and P(Lose) = $\frac{14}{24}$ or $\frac{7}{12}$ oe)	A1ft	ft correct decision for their $\frac{5}{12}$ (and their $\frac{7}{12}$) with M2 scored	
	Additional Guidance is on the follo	wing pag	je	

Question Answer	Mark	Comments
-----------------	------	----------

	Additional Guidance	
	Check the tree diagram for working	
	Any 'their' or ft probability must be > 0 and < 1 for marks to be awarded	
	For the second A1ft, the ft can be from an incorrect tree (which may score 4 marks) or an arithmetic error (which scores 3 marks, M1M1A0A1ft)	
	Accept equivalent fractions or decimals within calculations and equivalent fractions, decimals or percentages for final probabilities	
	Accept decimals or percentages rounded or truncated correctly to at least 2 significant figures	
6(b)	Condone $\frac{1}{2} \times \text{their } \frac{1}{2}$ as part of a longer, incorrect multiplication	
cont	$eg \frac{1}{2} \times \frac{1}{2} \times \frac{1}{6}$	M1M0A0A0
	Condone decimals used within fractions	
	$eg P(Win) = \frac{2.5}{6}$	at least M1M1A1
	For the method marks, condone incorrect mathematical notation eg $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} + \frac{1}{6} = \dots$	at least M1M1 (may go on to score 3 or 4 marks)
	For the second A1ft, if the student gives a value for P(Lose), their P(Win) + their P(Lose) must equal 1	
	However, allow a comparison to $\frac{1}{2}$ unless it is clearly an incorrect value for P(Lose)	

Question	Answer	Mark	Comments		
	Alternative method 1				
	$3 \div \frac{20}{100}$ or 3×5 or 15 or 3×6	M1	oe		
	18	A1			
7	Alternative method 2				
	1.2x = x + 3	M1	oe equation		
	18	A1			
	Additional Guidance				
	Trial and improvement scores 0 or 2	unless M1	can be awarded for 15		
	15 seen scores M1				

Question	Answer	Mark	Commen	ts
8	$(3^{12} =) 531441$ or $(3^{5} =) 243$ or $(3^{12} \div 3^{5} =) 3^{7} \text{ or } (3^{12} \div 3^{5} =) 2187$ or $(3^{2} \times 3 =) 3^{3} \text{ or } (3^{2} \times 3 =) 27$ or $3^{12} \div 3^{5} \div 3^{2} \div 3$ or $\frac{3^{12}}{3^{5}} \times \frac{1}{3^{2} \times 3}$ $3^{7} \div 3^{3} \text{ or } 3^{7} \div 27$ or $3^{(12-5-2-1)}$ or $\frac{3^{12}}{3^{8}}$ or 3^{4} or $2187 \div 27$	M1 M1dep	oe in the form $3^n \div 3^{(n-2)}$	
	81	A1		
	Ade	ditional G	Guidance	
	3 ⁴ and 81 on the answer line in either order			M1M1A1
	81 in working and 3 ⁴ on the answer line			M1M1A0

Question	Answer	Mark	Comments	
	Alternative method 1: areas			
	$\pi \times 10^2$ or 100π	M1	implied by [314, 314.2]	
	$\pi \times (8 \div 2)^2$ or $\pi \times 4^2$ or 16π or $\pi \times (8 \div 2)^2 \div 2$ or $\pi \times 4^2 \div 2$ or $16\pi \div 2$ or 8π	M1	implied by [50.2, 50.3] or [25.12, 25.14] 92π or 84π or $92:8$ or $8:92$ or $84:16$ or $16:84$ implies M1M1	
	(their $100(\pi)$ – their $8(\pi)$) ÷ their $8(\pi)$ or $92(\pi)$ ÷ $8(\pi)$ or their $100(\pi)$ ÷ their $8(\pi)$ (– 1) or $12\frac{1}{2}$ (– 1) or 12.5 (– 1)	M1dep	dep on M2 absence of π must be consistent condone $16(\pi)$ as their $8(\pi)$ in first calculation only, ie condone (their $100(\pi)$ – their $16(\pi)$) \div their $16(\pi)$ or $84(\pi) \div 16(\pi)$, but not their $100(\pi) \div$ their $16(\pi)$ (– 1)	
	$11\frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$	
9	Alternative method 2: scale factor			
	$\frac{10}{8 \div 2}$ or $\frac{10}{4}$ or $\frac{5}{2}$ or $\frac{10 \times 2}{8}$ or $\frac{20}{8}$ or 2.5	M1	oe scale factor of lengths eg $\frac{2}{5}$ or 0.4 accept 2:5 or 5:2 oe ratio π may be present, but must be consistent in numerator and denominator	
	$(\text{their } \frac{5}{2})^2 \text{ or } \frac{25}{4}$	M1dep	oe scale factor of areas eg $\frac{4}{25}$ accept 4 : 25 or 25 : 4 oe ratio	
	$2 \times \text{their } \frac{25}{4} \ (-1) \ \text{or } \frac{25}{2} \ (-1)$ or $12\frac{1}{2} \ (-1) \ \text{or } 12.5 \ (-1)$	M1dep	oe eg $2 \div \text{their } \frac{4}{25} (-1)$	
	$11\frac{1}{2}$ or 11.5	A1	condone $\frac{23}{2}$	
	Additional Guidance is on the follo	wing pag	je	

Question	Answer	Mark	Comments

	Additional Guidance				
	Accept, for example, $\pi 8$ or $\pi \times 8$ or $8 \times \pi$ for 8π				
	An answer of 11.5 π with no incorrect working	M1M1M1A0			
	Consistent use of πd^2 for the area of a circle gives the area of the circle as 400π , the area of the semicircle as 32π and the area of the shaded part as 368π . This also gives the answer 11.5, but scores zero	МОМОМОАО			
	Irrespective of where their answer comes from and the presence of other measures such as circumference, students can gain the first two marks of alternative method 1 if it is clear that the methods or values given are for area				
9	eg 1				
(cont)	Big area = 100π , little area = 8π , big circumference = 20π , little circumference = 4π , $20 \div 4 = 5$	M1M1M0A0			
	eg 2				
	$100\pi, 8\pi, 20\pi, 4\pi$	MOMO			
	Do not award the second mark if the value of 8π comes from πd	M?M0			
	This is implied by, eg, 'Area of circle = 20π , area of semi-circle = 8π '	MOMO			
	$\frac{100(\pi) - 16(\pi)}{16(\pi)}$ (which may give an answer of 5.25)	M1M1M1A0			
	$\frac{100(\pi)}{16(\pi)}$ (which may give an answer of 6.25)	M1M1M0A0			

Question	Answer	Mark	Comment	ts	
	Plots the points (1, 60), (2, 30), (3, 20) and (4, 15)	M1	$\pm \frac{1}{2}$ small square		
	Correct smooth curve through correct four points	A1	$\pm \frac{1}{2}$ small square		
	Additional Guidance				
	Ignore any calculations and mark the graph only				
10(a)	Points cannot be implied by a bar chart or vertical line graph, but condone crosses at the top of a vertical line graph for M1 and the correct curve superimposed for M1A1				
	For M1, ignore the curve outside the domain $1 \le t \le 4$ For A1, whether or not the curve extends outside the domain $1 \le t \le 4$ it must not have a positive gradient at any point				
	If there is no curve, for M1 there must be no other points with <i>x</i> -coordinate 1, 2, 3 or 4				
	The curve should be a single line with no feathering				
	Unless it affects the shape of the curve (in which case A1 cannot be awarded), ignore incorrect evaluations of $60 \div a$ non-integer value eg $60 \div 1.5 =$				

Question	Answer	Mark	Commen	nts
	Vertical line from $3\frac{1}{2}$ minutes to their graph	M1	$\pm \frac{1}{2}$ small square implied by mark at correct graph or on the vertical at the horizontal axis) or by	axis (but not on
10(b)	Correct reading from their graph for $t=3.5$ Additional Guidance Correct reading for their graph, with or without evidence of using graph MoAl No graph in (a) MoAl To score any marks, their graph must be decreasing in the domain $1 \le t \le 4$, but may be a straight line or series of connected straight lines			
	Answer from 60 ÷ 3.5 with no graph, or which does not match graph M0A0			M0A0
	Reading from 3.3			M0A0

Question	Answer	Mark	Comments		
	Alternative method 1				
	330 ÷ (7 + 4) or 30	M1	ое		
	7 × their 30 or 210		ое		
	and	M1dep			
	4 × their 30 or 120				
	45	A1			
	Alternative method 2				
	330 ÷ (7 + 4) or 30	M1	oe		
	(7 - 4) x their 30 or 90	M1dep	oe		
	45	A1			
	Alternative method 3				
11	330 ÷ (7 + 4) or 30	M1	oe		
	7 × their 30 or 210		oe oe		
	or $4 \times$ their 30 or 120 and	M1dep			
	330 ÷ 2 or 165				
	45	A1			
	Alternative method 4				
	330 ÷ (7 + 4) or 30	M1	oe		
	their 30 × 1.5	M1dep	oe		
	45	A1			
	Additional Guidance				

Question	Answer	Mark	Comments	
12	-9 2 -7 -5 -12	B1		
	One of $(102 \rightarrow) 100$ $(8.14 \rightarrow) 8$ their $100 = 0.5 \times x^2 \times \text{their } 8$	M1	oe	
13	or $(x^2 =)$ their $100 \div 8 \times 2$ or $(x^2 =) 100 \div$ their 8×2 or 25 or their $8 \times 5 \times 5 \times 0.5 = 100$ or $8 \times 5 \times 5 \times 0.5 =$ their 100	M1dep	must have used at least one correct 1 sf value	
	5 with M2 seen	A1		
	Additional Guidance			
	If working is done with approximations and with the given values ignore the working with the given values and mark the working with approximations			

Question	Answer	Mark	Comments		
	Alternative method 1: work out the	value of k	ooth angles		
	$(b =) 90 \div 5 \times 3 \text{ or } 54$	M1	oe may be on diagram for b or x		
	$(x =) \frac{360 - 90 - \text{their } 54}{3 + 1} \text{ or } \frac{216}{4}$	M1dep	ое		
	(b =) 54 and $(x =) 54$ with M2 awarded	A1			
	Alternative method 2: assumes bo quadrilateral	th angles	are equal and uses sum of angles in a		
	$(b =) 90 \div 5 \times 3 \text{ or } 54$	M1	oe may be on diagram for b or x		
14	90 + their 54 + their 54 + 3 × their 54 or $360 - 90 -$ their 54 - their 54 and either $3 \times$ their 54 or their $162 \div 3$ or their $162 \div 54$ 90 + 54 + 54 + 162 = 360 and $54 \times 3 = 162$ or $360 - 90 - 54 - 54 = 162$ and $162 \div 3 = 54$ or $162 \div 54 = 3$	M1dep	oe addition of the four angles in the quadrilateral or subtraction of 90 and the two equal angles from 360 and multiplication to work out the fourth angle or division of the fourth angle by 3 or 54 to act as a check oe		
	Alternative method 3: assumes bo	th angles	are equal and uses ratio to check 90°		
	5:3:3:9	M1			
	$360 \div (5 + 3 + 3 + 9) \times 5$ or $360 \div 20 \times 5$	M1dep	oe		
	$360 \div 20 \times 5 = 90$ with M2 awarded	A1			
	Ado	ditional G	Buidance		
	Any correct method to work out 54 so	Any correct method to work out 54 scores M1 on alt 1 or alt 2			

Question	Answer	Mark	Comme	nts	
15(a)	20 48 88 108 120	B1			
	All 5 points plotted using upper class bounds and their cf values	M1	$\pm \frac{1}{2}$ small square must be increasing		
	Smooth curve or polygon for their cf values	A1ft	$\pm \frac{1}{2}$ small square must be increasing		
	Ad	lditional (Guidance		
15(b)	If (a) is correct, points should be at (10, 20), (20, 48), (30, 88), (40, 108) and (50, 120)				
	For A1, the graph should start at (0, 0				
	For A1, the graph should end at $m =$ horizontal line adjoining (50, 120)				
	Histogram only	Histogram only			
	Histogram and graph			Mark curve	
	Line from 15 marks to their graph		$\pm \frac{1}{2}$ small square		
	M1 implied by mark at correct place on the graph or on the vertical axis (but not on the horizontal axis) or by correct reading from their graph				
15(c)	Correct reading from their graph for 15 marks $\pm \frac{1}{2}$ small square				
10(0)	Additional Guidance				
	Correct reading for their graph, with or without evidence of using graph			M1A1	
	No graph in (b)			M0A0	
	For M1 and A1ft the domain of their gand their graph must be increasing in $m = 10$ if their graph does not extend	the doma	ain $10 \leqslant m \leqslant 50$ or from		

Question	Answer	Mark	Comme	nts	
	Correct factorisation of numerator $2(2x-4x^2)$ or $4(x-2x^2)$ or $x(4-8x)$ or $2x(2-4x)$ or $4x(1-2x)$ or correct factorisation of denominator $2(6x-3)$ or $3(4x-2)$ or $6(2x-1)$ or correct cancelling by 2 throughout $\frac{2x-4x^2}{6x-3}$	M1	oe with negative coeffici	ents	
16	Correct fraction with numerator $4x(1-2x)$ or $-4x(2x-1)$ and denominator $6(2x-1)$ or $-6(1-2x)$ or $-\frac{4x}{6}$ or $\frac{-4x}{6}$ or $\frac{4x}{-6}$ or $\frac{2x(2-4x)}{-3(2-4x)}$ or $\frac{2x(2-4x)}{3(4x-2)}$	M1dep	oe with cancelling of 2 the eg $\frac{2x(1-2x)}{3(2x-1)} \text{ or } \frac{2x(1-2x)}{-3(1-2x)}$		
	$-\frac{2x}{3}$ or $-\frac{2}{3}x$	A1	allow $\frac{-2x}{3}$ or $\frac{2x}{-3}$		
	Additional Guidance				
	Allow multiplication signs up to M1M2	1			
	Allow -0.6 for $-\frac{2}{3}$				
	Do not allow -0.66 for $-\frac{2}{3}$				
	For the first M1 only, allow any correct factorisation seen within multiple attempts				

Question	Answer	Mark	Comme	nts
	$y^2 = \frac{1}{2}y(y+3)$ oe equation $eg \ 2y^2 = y^2 + 3y \text{ or } y^2 = y^2 + 3y \text{ or } y^2 = y^2 + 3y \text{ or } y = 0 \text{ or } y =$			n equation using a
	Additional Guidance			
	Allow multiplication signs			
17(a)	eg $y \times y = \frac{y}{2} \times (y + 3)$	B2		
	$y^2 = \frac{1}{2}y(y + 3)$ followed by incorrect state the equation	B2		
	$y^2 = \frac{1}{2}y + y + 3$			В0
	3 only or 0 only or 0 and 3 only			В0
	Do not allow missing or partially missing brackets unless recovered			
	eg1 $y^2 = \frac{1}{2}y \times y + 3$ without correct equation seen			В0
	eg2 $y^2 = \frac{1}{2}y(y + 3)$ without correct equation seen			В0
				<u> </u>

Question	Answer	Mark	Comme	nts
	Correct comment		eg1 he hasn't square ro	oted (correctly)
	or	B1 eg2 it should be $\sqrt{8} x =$		3
	shows correct working	D1	eg3 he should have divi	ded (by 8) before
	Ad	ditional (Guidance	
	$\sqrt{8}$ may be given as $2\sqrt{2}$			
	Comment that he shouldn't have a ne	egative an	swer	В0
	Mathematically incorrect statement			В0
	Correct comment and an incorrect co	mment		В0
	Ex	ample re	sponses	
	He has taken it as $(8x)^2$			B1
	He has divided $8x^2$ by x (instead of so the 9	B1		
17(b)	He $\sqrt{}$ first when supposed to divide		B1	
	He didn't divide 9 by 8 to get x^2	B1		
	At the start he took the 8 over when y	B1		
	Toby should have got $\pm \sqrt{\frac{9}{8}}$			B1
	He should have divided by 8			В0
	Toby didn't square root 8x	В0		
	He hasn't square rooted the $8x^2$ to le	В0		
	He hasn't square rooted the other sid	В0		
	Didn't divide by 8			В0
	He should have divided by 8x			В0
	He found the square root of 9 but did	n't write √	8x = 9	В0

Question	Answer	Mark	Comme	nts
	(193 + 7)(193 – 7) or (200)(186) or 200 (×) 186	M1	either order	
	(200)(186) = 37 200 or 200 (×) 186 = 37 200	A1		
18(a)	Ado	ditional G	Guidance	
	37 200 with correct method not seen			M0A0
	37 200 from 37 249 – 49 only	M0A0		
	37 200 from (200)(186) or 200 (×) 186	M1A1		
	Do not award M1 for a 'misread' eg (M0A0		
	(10a + 9b)(10a - 9b)	B1	either order	
	(9b + 10a)(10a - 9b)	_ D1		
18(b)	Ade	ditional G	Buidance	
	Condone missing final bracket, eg (1	10a + 9b)(10 <i>a</i> – 9 <i>b</i>	B1
	Condone a multiplication sign eg $(10a + 9b) \times (10a - 9b)$			
19	1 9	B1		

Question	Answer	Mark	Comments	
	Alternative method 1: shows that	BAC = AC	CD and alternate angles	
	ACD = ABC	M1	accept both with same letter on diagram	
	ABC = BAC	M1	accept both with same letter on diagram	
	BAC = ACD and alternate segment (theorem) with M2 awarded	M1dep	dep on M2	
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and alternate angles	
20(a)	Alternative method 2: shows that ABC + BCD = 180 and co-interior angles			
20(4)	ACD = ABC	M1	accept both with same letter on diagram	
	ABC = BAC	M1	accept both with same letter on diagram	
	BCD = 180 - (BAC + ABC) + ACD and ABC + BCD = 180 and alternate segment (theorem) with M2 awarded	M1dep	oe dep on M2	
	Other two correct reasons given with M3 awarded	A1	eg (base angles of) isosceles triangle and (co-)interior angles or allied angles	
	The mark scheme for question 20((a) continu	ues on the next page	

Question	Answer	Mark	Comments
----------	--------	------	----------

	Alternative method 3: line from midpoint of AB to C is perpendicular to AB and CD				
	Let <i>M</i> be the midpoint of <i>AB</i> and <i>MC</i> is perpendicular to <i>AB</i>	M1	any letter		
	MC is perpendicular to CD	M1			
	AB and CD are both perpendicular to MC with M2 awarded	M1dep	oe dep on M2		
	Three correct reasons given with M3 awarded	A1	eg (perpendicular bisector of) isotriangle and MC goes through the ce circle and tangent is perpendicular	ntre of the	
	Additional Guidance				
20(a) (cont)	Other correct methods can be found by extending one or more of the lines. For example, by extending <i>BC</i> it is possible to use corresponding angles as a proof instead of alternating angles. This should be reflected in the reasons required for the last mark				
	In the scheme, ACD (for example) means angle ACD and not triangle ACD				
	Accept equality of angles indicated by labelling with the same letter, but not by arcs				
	Accept (angle) B for angle ABC				
	Do not accept (angle) A for angle BAC or (angle) C for angle ACB unless intention is clear from annotation of the diagram				
	For the third mark in alternative method 2, accept algebraic expressions for angles if clearly marked on the diagram				
	Do not award marks for an argument based only on assumed values of angles, but ignore 60° marked on diagram, which is for (b)				
	Ignore an angle marked at ADC				
	Ignore incorrect statements that do n eg ACD is an isosceles triangle (but	·			

Question	Answer	Mark	Comments
20(b)	✓ AB is parallel to DC ✓ AC bisects angle BCD	B1	
	AC bisects angle BAD	dditional	Guidance

Question	Answer	Mark	Comments	
	Alternative method 1: substitution	of 2 <i>x</i> + <i>p</i>	for y	
	2x + 3(2x + p) = 5p	M1	oe equation eg $2x + 6x + 3p = 5p$	
	6x + 2x = 5p - 3p or $8x = 2p$	M1dep	oe equation with terms collected condone incorrect expansion before rearrangement	
21	Correct simplified terms $(x =) \frac{p}{4} \text{ or } \frac{1}{4}p \text{ or } 0.25p$ and $(y =) \frac{3p}{2} \text{ or } \frac{3}{2}p \text{ or } 1\frac{1}{2}p \text{ or } 1.5p$	A2	one correct simplified term or otherwise correct terms for both with 'p' omitted eg $x = 0.25$ and $y = 1.5$ or correct unsimplified terms for both eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$	
	Alternative method 2: substitution of $y - p$ for $2x$			
	y - p + 3y = 5p	M1	oe equation	
	y + 3y = 5p + p or $4y = 6p$	M1dep	oe equation with terms collected	
	Correct simplified terms $ (x =) \frac{p}{4} \text{ or } \frac{1}{4}p \text{ or } 0.25p $ and $ (y =) \frac{3p}{2} \text{ or } \frac{3}{2}p \text{ or } 1\frac{1}{2}p \text{ or } 1.5p $	A2	one correct simplified term or otherwise correct terms for both with 'p' omitted eg $x = 0.25$ and $y = 1.5$ or correct unsimplified terms for both eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$	
	The mark scheme for question 21 continues on the next page			

Question	Answer	Mark	Comments			
	Alternative method 3: elimination of <i>x</i>					
	y - 2x = p	M1	oe with multiplication of both equations			
	y + 3y = 5p + p or $4y = 6p$	M1dep	oe addition must be seen if result is incorrect			
21	Correct simplified terms $(x =) \frac{p}{4} \text{ or } \frac{1}{4}p \text{ or } 0.25p$ and $(y =) \frac{3p}{2} \text{ or } \frac{3}{2}p \text{ or } 1\frac{1}{2}p \text{ or } 1.5p$	A2	one correct simplified term or otherwise correct terms for both with 'p' omitted eg $x = 0.25$ and $y = 1.5$ or correct unsimplified terms for both eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$			
(cont)	Alternative method 4: elimination of y					
	3y - 6x = 3p	M1	oe with multiplication of both equations			
	2x - (-6x) = 5p - 3p or $8x = 2p$	M1dep	oe subtraction must be seen if result is incorrect			
	Correct simplified terms $(x =) \frac{p}{4} \text{ or } \frac{1}{4}p \text{ or } 0.25p$ and $(y =) \frac{3p}{2} \text{ or } \frac{3}{2}p \text{ or } 1\frac{1}{2}p \text{ or } 1.5p$	A2	A1 one correct simplified term or otherwise correct terms for both with 'p' omitted eg $x = 0.25$ and $y = 1.5$ or correct unsimplified terms for both eg $x = \frac{2p}{8}$ and $y = \frac{6p}{4}$			

Question	Answer	Mark	Commer	nts	
	$-3\mathbf{b} + 6\mathbf{a} + 7.5\mathbf{b} \ (= 6\mathbf{a} + 4.5\mathbf{b})$ or $6\mathbf{a} + 7.5\mathbf{b} - 3\mathbf{b} \ (= 6\mathbf{a} + 4.5\mathbf{b})$ or $6\mathbf{a} + 7.5\mathbf{b} - (6\mathbf{a} + 4.5\mathbf{b}) = 3\mathbf{b}$	B1	oe rearranged equation	using all 5 terms	
22(a)	Additional Guidance				
(a)	$3\mathbf{b} + 6\mathbf{a} + 4.5\mathbf{b} = 6\mathbf{a} + 7.5\mathbf{b}$			B1	
	$6\mathbf{a} + 4.5\mathbf{b} + 3\mathbf{b} = 6\mathbf{a} + 7.5\mathbf{b}$			B1	
	$7.5\mathbf{b} - 3\mathbf{b} = 4.5\mathbf{b}$, so $6\mathbf{a} + 4.5\mathbf{b}$			В0	
	$6\mathbf{a} + 7.5\mathbf{b} - 3\mathbf{b} = 4.5\mathbf{b}$			В0	

Question	Answer	Mark	Comments		
	Alternative method 1: equal ratios from $ka + 3b$ and $6a + 4.5b$				
	$(BC =) k\mathbf{a} + 3\mathbf{b}$ or $k : 6 = 3 : 4.5$ or $k : 3 = 6 : 4.5$	M1	oe ratio		
	$3 \times 6 \div 4.5$ or $4a + 3b$	M1dep	oe		
	4	A1			
	Alternative method 2: scale factor	from ka +	3b and 6a + 4.5b		
	$(BC =) k\mathbf{a} + 3\mathbf{b}$ or $4.5 \div 3$ or $\frac{3}{2}$		oe fractions or decimals		
22(b)	or $3 \div 4.5$ or $\frac{2}{3}$	M1			
	or $4.5 \div 6$ or $\frac{3}{4}$ or $6 \div 4.5$ or $\frac{4}{3}$				
	$6 \div \text{their } \frac{3}{2}$		oe		
	or $6 \times \text{their } \frac{2}{3}$				
	or $3 \div \text{their } \frac{3}{4}$	M1dep			
	or $3 \times \text{their } \frac{4}{3}$				
	or 4 a + 3 b				
	4	A1			
	The mark scheme for question 22(b) continu	ues on the next page		

Question	Answer	Mark	Comments		
	Alternative method 3: equal ratios from $(k + 6)a + 7.5b$ and $6a + 4.5b$				
	$(BD =) k\mathbf{a} + 6\mathbf{a} + 7.5\mathbf{b}$ or $(BD =) (k + 6)\mathbf{a} + 7.5\mathbf{b}$ or $(k + 6) : 6 = 7.5 : 4.5$ or $(k + 6) : 7.5 = 6 : 4.5$	M1	oe ratio		
	$6 \times 7.5 \div 4.5 - 6$ or $4\mathbf{a} + 3\mathbf{b}$	M1dep	oe		
	4	A1			
	Alternative method 4: scale factor	from (k +	6)a + 7.5b and 6a + 4.5b		
22(b) (cont)	$(BD =) k\mathbf{a} + 6\mathbf{a} + 7.5\mathbf{b}$ or $(BD =) (k + 6)\mathbf{a} + 7.5\mathbf{b}$ or $7.5 \div 4.5$ or $\frac{5}{3}$ or $4.5 \div 7.5$ or $\frac{3}{5}$ or $4.5 \div 6$ or $\frac{3}{4}$ or $6 \div 4.5$ or $\frac{4}{3}$	M1	oe fractions or decimals		
	$6 \times \text{their } \frac{5}{3} - 6$ or $6 \div \text{their } \frac{3}{5} - 6$ or $7.5 \div \text{their } \frac{3}{4} - 6$ or $7.5 \times \text{their } \frac{4}{3} - 6$ or $4\mathbf{a} + 3\mathbf{b}$	M1dep	oe		
	4	A1			
	Additional Guidance for question 2	2(b) is on	the next page		

Question	Answer	Mark	Comments

	Additional Guidance				
	Check the diagram for working				
	If working is not seen, only accept exact decimal values in place of fractions for method marks				
22(b) (cont)	Answer 4 with no working or no incorrect working	M1M1A1			
	Assumes that BC is $3a + 2.25b$ (half the length of CD) or that BC is $2a + 1.5b$ (one third of the length of CD)	MOMOAO MOMOAO			
	4a on the answer line does not get the A mark, but may have scored the method marks				

Question	Answer	Mark	Comments		
	Alternative method 1				
	$(8^4 =) (2^3)^4 \text{ or } 2^{12}$ or $(32^{\frac{2}{5}} =) (2^5)^{\frac{2}{5}} \text{ or } 2^2$	M1			
	2 ¹² and 2 ²	M1dep	or calculation in the form $2^{a} \div 2^{b} \text{ where } a - b = 10$ $2^{c} \times 2^{d} \text{ where } c + d = 10$		
	2 ¹⁰	A1	Accept $m = 10$		
	Alternative method 2				
23	$(8^4 =) 4096 \text{ or } (32^{\frac{2}{5}} =) 4$	M1			
	1024	M1dep			
	2 ¹⁰	A1	Accept $m = 10$		
	Additional Guidance				
	Note that 1024 from 32 × 32 scores 2 marks if 1024 is their final numerical answer				
	However, if they then try to find $\sqrt[5]{1024}$ they are clearly processing $(32^{\frac{2}{5}})$ =), so this would only score 0 marks without further work				
	If a numerical method and an index method are both attempted and an incorrect answer is given, award up to M1M1 from the better method				
24	-1	B1			

Question	Answer	Mark	Commer	nts
	(gradient of $OP =$) $\frac{8-0}{4-0}$	M1	oe eg (gradient of <i>OP</i> =) 8/4
	(gradient of $OP = 2$ or $\frac{2}{1}$		oe	
	and	A1	accept 'negative recipro	cal, so $-\frac{1}{2}$
	$-1 \div 2 = -\frac{1}{2}$ or $2 \times -\frac{1}{2} = -1$		or 'product of gradients	is -1 , so $-\frac{1}{2}$,
25(a)	with M1 seen		oe comment	
	Additional Guidance			
	$4 \div 8 = \frac{1}{2}$ but slope is negative, so $-\frac{1}{2}$			M0A0
	Do not accept a gradient including x			
	eg $\frac{8}{4}$ = 2, so gradient of OP = 2 x , product of gradients is -1, so $-\frac{1}{2}x$			M1A0

Answer	Mark	Comments	
Alternative method 1: $y = -\frac{1}{2}x + c$	and subs	titutes 8 and 4	
$8 = -\frac{1}{2} \times 4 + c$ or $(c =) 10$	M1	oe implied by $y = -\frac{1}{2}x + 10$	
$0 = -\frac{1}{2}x + \text{their } 10 \text{ or } (x =) 20$	M1dep	oe	
their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2 $\sqrt{125}$ dep on M2	
10√5	A1	accept $a = 10$ with $\sqrt{500}$ seen	
Alternative method 2: uses the formula for a line and substitutes $x = 0$ and $y = 0$			
$y - 8 = -\frac{1}{2}(x - 4)$ and substitutes $x = 0$ or $y = 0$ or $(x =) 20$ or $(y =) 10$	M1	oe equation eg $x + 2y = 20$	
$y-8=-\frac{1}{2}(x-4)$ and substitutes $x=0$ and substitutes $y=0$ or $(x=)$ 20 and $(y=)$ 10	M1	oe equation eg $x + 2y = 20$	
their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg $2\sqrt{125}$ dep on M2	
10 √5	A1	accept $a = 10$ with $\sqrt{500}$ seen	
The mark scheme for question 25(b) continues on the next page			
	Alternative method 1: $y = -\frac{1}{2}x + c$ is $8 = -\frac{1}{2} \times 4 + c$ or $(c =) 10$ $0 = -\frac{1}{2}x + \text{their } 10$ or $(x =) 20$ their $20^2 + \text{their } 10^2$ or 500 or $\sqrt{500}$ Alternative method 2: uses the form $y - 8 = -\frac{1}{2}(x - 4)$ and substitutes $x = 0$ or $y = 0$ or $(x =) 20$ or $(y =) 10$ $y - 8 = -\frac{1}{2}(x - 4)$ and substitutes $x = 0$ and substitutes $x = 0$ and substitutes $y = 0$ or $(x =) 20$ and $(y =) 10$ their $20^2 + \text{their } 10^2$ or 500 or $\sqrt{500}$ $10\sqrt{5}$	Alternative method 1: $y = -\frac{1}{2}x + c$ and substitutes $x = 0$ or $(x =) 20$ M1dep M1 Alternative method 2: uses the formula for a substitutes $x = 0$ or $(x =) 20$ M1 M1 Alternative method 2: uses the formula for a substitutes $x = 0$ or $(x =) 20$ or $(y =) 10$ M1 $y - 8 = -\frac{1}{2}(x - 4)$ and substitutes $x = 0$ or $(x =) 20$ or $(y =) 10$ M1 Their $(x =) 20$ and $(x =) 20$ M1 Their $(x =) 20$ and $(x =) 20$ M1 Their $(x =) 20$ And $(x =) 20$ M1 Their $(x =) 20$ And $(x =) 20$ M1 Their $(x =) 20$ And $(x =) 20$ M1 Their $(x =) 20$ And $(x =) 20$ M1 Their $(x =) 20$ And $(x =) 20$ M1 Their $(x =) 20$ And $(x =) 20$ M1 Their $(x =) 20$ And $(x =) 20$	

Question	Answer	Mark	Comme	nts		
Alternative method 3: uses formula for gradient with points A and B						
	$\frac{8-0}{4-x} = -\frac{1}{2}$ or $(x =) 20$	M1	oe correct method to work out the x-coordinate of point A			
	$\frac{y-8}{0-4} = -\frac{1}{2}$ or $(y =) 10$	M1	oe correct method to work out the y-coordinate of point B			
	their 20^2 + their 10^2 or 500 or $\sqrt{500}$	M1dep	oe eg 2 $\sqrt{125}$ dep on M2			
	10√5	A1	accept $a = 10$ with $\sqrt{500}$	seen		
25(b) (cont)	Additional Guidance					
	Check the diagram and 25(a) for poss					
	eg 1 20 marked on axis at A	M1				
	eg 2 10 marked on axis at B	M1				
	On alternative method 2, if using $y - 8$					
	x = 0 or $y = 0$ for M1 and both separate					
	On alternative method 2, incorrect rea					
	can score up to 3 marks					
	eg $y - 8 = -\frac{1}{2}(x - 4)$, $2y - 8 = -x - 2$					
	when $y = 0$, $x = 4$, when $x = 0$, $y = 2$,	M1M1M1				

	$(x-2)^2$ or $(x+2)^2$ or $a=2$	M1	oe implied by $x^2 + 2x + $ or $x^2 + 4x + 4 (+ b)$	2x + 4 (+ b)	
	$1 = (3+2)^2 + b$	M1dep	oe		
26	-24	A1	accept (-2, -24)		
	Additional Guidance				
	$(x-2)^{2}$ $1 = (3-2)^{2} + b$			МО	
	$1 = (3-2)^2 + b$			MO	

Question	Answer	Mark	Comments	
27	$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ or $\tan 30^{\circ} = \frac{\sqrt{3}}{3}$ or $\frac{1}{\sqrt{3}}$ or $\tan 30^{\circ} (= \frac{\sin 30}{\cos 30}) = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$	M1	oe may be in a table may be implied by position in multiplication	
	$\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = \frac{1}{2}$ or $\cos x = \frac{1}{2}$ or $(x =) \cos^{-1} \frac{1}{2}$	M1dep	oe works out the value of cos x as a fraction or decimal with no surd values	
	60 with M2 awarded	A1		
	Additional Guidance			
	$\cos x = 60$ does not score the final mark			