

GCE A LEVEL MARKING SCHEME

AUTUMN 2021

A LEVEL CHEMISTRY - COMPONENT 2 A410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

AUTUMN 2021 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	0	4!	Manufair or describe			Marks a	vailable		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1	(a)		CH ₂	1			1		
	(b)	(i)	80		1		1		
		(ii)	peak C B is methylcyclohexane and C will have a longer retention time than B , as its M_r is greater than B , but not as great as propylcyclohexane which is peak D other acceptable answers to be discussed at the conference			1	1		
2	(a)		1:1 reaction therefore 0.500 mol of Br ₂ is needed (1) volume = $\frac{m}{d} = \frac{159.8 \times 0.500}{3.16} = 25.3$ (1)		1	1	2	1	
	(b)		the melting temperature is lower (and over a range)	1			1		1
3	(a)		yellow because the colour seen is the colour(s) not absorbed accept orange / red / other end of visible spectrum	1			1		
	(b)		Sn / Fe and concentrated HCl		1		1		1
	(c)	(i)	ethanoic anhydride / ethanoyl chloride / (CH ₃ CO) ₂ O / CH ₃ COCl	1			1		
		(ii)	yellow / orange to colourless / white (precipitate)		1		1		1

	Ouget	tion	Marking dataila			Marks a	vailable		
	Quest	uon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4			0.365 g of Ag from 0.774 g of salt						
			1 g of silver from $\frac{0.774}{0.365}$ g of salt						
			108 g / 1 mol of silver from $\frac{0.774}{0.365} \times 108 = 229$ g of salt				2		
			$M_{\rm r}$ of salt = 229 (1)		1			1	
			$M_{\rm r}$ of acid = 229 – 108 + 1 = 122 (1)			1			
5			CH ₃ -C-C-CH ₃ (1) O O	1					
			m/z of molecular ion is 86 (1)		1		3		
			award (1) for both of following fragments m/z 43 \rightarrow CH ₃ CO ⁺ m/z 15 \rightarrow CH ₃ ⁺			1			
			Section A total	5	6	4	15	1	3

Section B

	0	.4!		Moulsing details			Marks a	vailable		
	Ques	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
6	(a)			CH ₃ CH ₂ CCH ₃ + CaCO ₃		1		1		
	(b)	(i)		$n(CaSO_4) = \frac{5.70}{136} = 0.0419 \qquad (1)$ 1:1 mol ratio therefore % purity of calcium propanoate $\frac{0.0419 \times 186}{8.38} \times 100 \qquad (1)$ 93.0 (1) must be given to 3 sig figs	1	2		3	1	
		(ii)	I	separating / dropping funnel	1			1		1
			II	award (1) for any of following look up the densities and the less dense liquid is the top layer / more dense liquid is the bottom layer add a drop of hexan-1-ol / water to the mixture and see which layer it joins			1	1		1
		(iii)		$CH_3CH_2COOH + CH_3(CH_2)_4CH_2OH \rightarrow CH_3CH_2C \bigcirc O(CH_2)_5CH_3 + H_2O$ balanced equation (1) structure of ester (1)		2		2		

0	-4! - ··	Moulting details			Marks a	vailable		
Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(c)		solubility in 100g water at 100°C is 56g and at 0°C is 49g in 20g water $\Rightarrow \frac{56}{5}$ at 100°C and $\frac{49}{5}$ at 0°C (1) amount precipitated is $\frac{7}{5}$ = 1.4g (1)		2		2		
(d)	(i)	H-5/6/6/0-H	1			1		
	(ii)	[HS THE SH CE			1	1		
	(iii)	HS CH2 COOH HOSC CH2SH		1		1		
(e)	(i)	$c = f\lambda(1)$ $f = \frac{3.00 \times 10^8}{480 \times 10^{-9}} = 6.25 \times 10^{14} (1)$	1	1		2	2	

)aat	lian	Marking details		Marks available							
Quest	.1011	Marking details		AO1	AO2	AO3	Total	Maths	Prac		
	(ii)	$\frac{absorption 2}{absorption 1} = \frac{concentration 2}{concentration 1} $ (1)			1						
		concentration 2 = $\frac{0.70 \times 5 \times 10^{-4}}{1.25}$ = 2.8 × 10 ⁻⁴	(1)			1	2	1			
		credit other appropriate method									
			Question 6 total	4	10	3	17	4	2		

	0	_4!		Maddin a dataila	Marks available							
	Que	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac		
7	(a)			award (1) for NH ₂ (CH ₂) ₅ COOH on left hand side and H ₂ O on right hand side both needed		1		1				
	(b)	(i)		5% conversion ⇒ total 120 mol of cyclohexanol / cyclohexanone but 2:1: ratio therefore 80 mol cyclohexanol (1) M_r (cyclohexanol) = 100.1 (1) mass of cyclohexanol = 100.1 × 80 = 8.01 (1) must be given in kg	1	1	1	3	1			
		(ii)	I	the N atom has a lone pair of electrons which attacks the relatively δ + carbon atom (of the carbonyl group)		1		1				
			II	as the reaction proceeds the intensity of the C=N at 1665cm ⁻¹ decreases O-H at ~3200 cm ⁻¹ decreases C=O at 1650-1750 cm ⁻¹ increases N-H at 3300-3500 cm ⁻¹ increases C-N at 1020-1250 cm ⁻¹ increases award (2) for all five award (1) for one absorption which decreases and one which increases			2	2				
			III	award (1) for any of following rearrangement reaction therefore $M_{\rm r}$ is unchanged both compounds have the same $M_{\rm r}$ atom economy is 100%			1	1				

		stion	Moulting dataile			Marks a	vailable		
C	zues	suon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(c)		award (1) each for any two of following availability / cost of catalyst temperature needed pressure needed - linked to cost or safety availability of starting materials percentage conversion other answers to be discussed at the conference	2			2		
	(d)	(i)	award (1) for either of following to prevent water / cyclohexanol from distilling over to only allow cyclohexene to distil over			1	1		1
		(ii)	to avoid a build-up of pressure / to allow air present in the apparatus to escape	1			1		1
		(iii)	water (1) some escapes from the mixture because its boiling temperature is not much higher than 90°C (1)		2		2		2
		(iv)	moles of cyclohexene = $\frac{10}{66}$ = 0.152 percentage yield = $\frac{0.152 \times 100}{0.20}$ = 76 accept 75		1		1		
		(v)	elimination of 1 mol of water from 2 mol of cyclohexanol			1	1		

0	-4! - m		Maukina dataila			Marks a	vailable		
Que	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
(e)	(i)		1:1 mole ratio for an addition reaction therefore 6.86g is the mass of of 0.070 mol (1) $M_{r} = \frac{6.86}{0.070} = 98 \qquad \Rightarrow \qquad \text{this fits C}_{6}H_{10}O \qquad (1)$	1	1		2		
	(ii)	I	electrophilic addition	1			1		
		II	$\begin{array}{c} H_3C \\ H_3C \end{array} = C = C \\ C = O \\ CH_3 \end{array}$ addition of hydrogen across the C=C double bond gives the named compound / 4-methylpentan-2-one		1		1		
			Question 7 total	6	8	6	20	1	4

	0	-4!				Marks a	vailable		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a) (i)		Indicative content 4.0 cm³ of benzaldehyde used 3.6 cm³ of phenylamine used suitable volume of ethanol (25-50 cm³) / minimum volume health and safety considerations / risk assessment reference to stirring suitable size of apparatus use of dropping pipette / measuring cylinders	2	2	2	6		6
			5-6 marks Correct method with appropriate quantities of reactants and apparatus The candidate constructs a relevant, coherent and logically structured content. A sustained and substantiated line of reasoning is evident an accurately throughout. 3-4 marks Acceptable method with omission of some quantities of reactants and The candidate constructs a coherent account including many of the ke reasoning is evident in the linking of key points and use of scientific co 1-2 marks Brief outline method with limited detail relating to reagents and appara The candidate attempts to link at least two relevant points from the includion inclusion of irrelevant materials. There is some evidence of app	I account de scientification apparatus dicative m	ic conversions sizes of the sand vo	indicativ cabulary	d vocabu re conten is genera	t. Some ally sound	ised
			vocabulary. 0 marks The candidate does not make any attempt or give an answer worthy of	of credit.					

0	.4!			Mandaha araba	1a!!a			Marks a	vailable	!	
Ques	stion			Marking det	alis	AO1	AO2	AO3	Total	Maths	Prac
	(ii)	I	award (1) for eith operates at room quicker			1			1		
		П	award (1) for eith lower yield problem of remov	-		1			1		
(b)			each molecule to this reduces the t less energy is negiving a lower me structure of the 4- forces to occur in	occur (1) rendency for intermole eded to separate the relating temperature (1) -isomer does not enal	molecules into the liquid state ole intramolecular tendency is for 'more'		2	2	4		
(c)	(i)		Reagent NaHCO ₃ I ₂ / NaOH FeCI ₃ award (1) for each	Benzoic acid effervescence no observation h correct column	2-Hydroxybenzaldehyde no observation no observation purple solution		2		2		2
	(ii)		(C ₆ H ₅ COO) ₃ Fe					1	1		

Question	Marking details		Marks available							
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac			
(d)	award (1) for either of following contains an aldehyde / CHO group the ester is a reducing agent		1		2					
	Question 8 total	4	8	5	17	0	8			

	0	-4!-m	Maulina dataila			Marks a	vailable		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
9	(a)	(i)	$5.5 \times \frac{12}{100} = 0.66 \text{ g in } 100 \text{ g of oil}$ (1)						
			0.66×10^{-2} g in 1 g of oil 6.6 mg g ⁻¹ (1) must be given to 2 sig figs		2		2	1	
		(ii)	award (1) for any of following ethanol is renewable CH ₂ Cl ₂ is not renewable / CH ₂ Cl ₂ made from oil CH ₂ Cl ₂ damages the ozone layer other answers to be discussed at the conference		1		1		
		(iii)	diazonium compounds react with phenols to give coloured azo dyes (1) mention of chromophores / –N=N– (1)			2	2		
		(iv)	$CH_3 + (CH_3)_2 CHCQ \rightarrow CH_3 + HCQ $ $CH_3 + HCQ \rightarrow CH_3 + HCQ $ $CH_3 + HCQ \rightarrow CH_3 + HCQ \rightarrow CH_3$ $CH_3 + HCQ \rightarrow CH_3 + HCQ \rightarrow CH_3$ $CH_3 + HCQ \rightarrow CH_3 + HCQ \rightarrow CH_3$ $CH_3 + HCQ \rightarrow CH_3 \rightarrow CH_3$ $CH_3 + HCQ \rightarrow CH_3 \rightarrow CH_3$ $CH_3 + HCQ \rightarrow CH_3 \rightarrow CH_3$ $CH_3 + HCQ \rightarrow CH_3$	1	1		2		

Question			Maulin v dataila			Marks a	vailable		
			Marking details		AO2	AO3	Total	Maths	Prac
	(v)	I	for thymol to dissolve in water hydrogen bonding must be possible (1)						
		the —OH group (which could form hydrogen bonds with water) is only a small part of a much larger molecule (1)			1		2		
		II	CH ₃ o Na ⁺ H ₃ C CH ₃			1	1		
(b)	(i)		alcoholic KOH / NaOH		1		1		1
	(ii)		award (1) for either of following both carbon atoms involved in the C=C bond are bonded to two different atoms / groups there is no rotation about the C=C bond	1			1		
	(iii)		$\begin{array}{c c} & & \\ \hline \\ CH_2 & \bigcirc \\ \hline \\ C & C \\ \hline \\ H & H \\ \end{array}$	1			1		

Ousst	L!		Maukina dataila	Marks available					
Quest	lion		Marking details	AO1 AO2 AO3 Total Ma		Maths	Prac		
(iv) I			potassium cyanide / KCN	1			1		
		II	reduction	1			1		
		III	at 273K and 1 atm the molar volume is $22.4 \mathrm{dm^3}$ at 317K and 1 atm the molar volume is $\frac{22.4 \times 317}{273} = 26.0 \mathrm{dm^3}$ (1) 1:1 mole ratio \Rightarrow 26000 cm³ from 225 g of compound T 1 cm³ from $\frac{225}{26000}$ g		1		2	2	
$200 \text{ cm}^3 \text{ from } \frac{225 \times 200}{26000} = 1.73 \text{ g} \qquad (1)$ accept answers based on pV = nRT correct working (1) correct final fraction (1)			1		2	2			
			Question 9 total	6	8	3	17	3	1

	Question		Marking datails		Marks available						
			Marking details	AO1	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)	$\frac{140}{(6\times30)+(4\times17)}\times100=56$ award (2) for correct answer if answer incorrect award (1) for three correct M_r values $M_r[(CH_2)_6N]=140$ $M_r(CH_2O)=30$ $M_r(NH_3)=17$		2		2	1			
		(ii)	all carbon atoms are in same environment and all hydrogen protons are in the same environment	3		1	1				
		(iii)	(iii) tertiary - nitrogen atom bonded directly to three carbon atoms (1) base - nitrogen atom has lone pair (which it can donate) (1)			1	2				

Ougation	Marking details		Marks available							
Question			AO2	AO3	Total	Maths	Prac			
(b)	Indicative content									
	Reaction 1 • the C–Cl bond is weaker than the C–F bond and should be broken in preference therefore HHH H-C-C+ + Cl+ accept other sensible answers HHF Reaction 2 • aromatic rings are not susceptible to attack by nucleophiles such as OH ⁻ so no reaction occurs accept other sensible answers	2	2	2	6					
	$ \begin{array}{lll} \textbf{Reaction 3} \\ \bullet & \text{Br}\delta^- \text{ is not attacked by the π-electron cloud} \\ \bullet & \text{H}\delta^+ \text{ is attacked forming carbocation and bromide ion} \\ \bullet & \text{the product is correct / 2-bromopropane formed preferentially} \\ \textbf{accept other sensible answers} \\ \textbf{Reaction 4} \\ \bullet & \text{carboxylic acids are not reduced by NaBH}_4 \\ \bullet & \text{LiAlH}_4 \text{ should be used} \\ \end{array} $									

Question	Marking details
	5-6 marks Each reaction considered, errors identified and suitable corrections suggested The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout.
	3-4 marks Most of the reactions considered, some errors identified and some suitable corrections suggested The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.
	1-2 marks Some of the reactions considered, attempt to identify errors The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary.
	0 marks The candidate does not make any attempt or give an answer worthy of credit.

0	Maulina dataila	Marks available							
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
(c) (i)	$M_{\rm r}({\rm AgCI}) = 143.5$		2		2	1			
	143.5g AgCl contains 35.5 g Cl								
	1g AgCl contains $\frac{35.5}{143.5}$ g Cl								
	8.83g AgCl contains $\frac{35.5}{143.5} \times 8.83 = 2.184$ g Cl (1)								
	percentage Cl in the sample = $\frac{2.184}{4.75} \times 100 = 46.0$ (1)								
(ii)	59% chloroethanoic acid 41% dichloroethanoic acid both needed	1			1				
(d)	turns UI paper red ⇔ carboxylic acid (1)						1		
	two of the three oxygen atoms must be in the acid group (1)								
	two ¹³ C NMR signals ⇒ one carbon atom in an environment other than acid group (1)								
	$M_{\rm r}$ is 74 but acid group COOH has $M_{\rm r}$ 45 \Rightarrow remainder is 29 must be one carbon, one oxygen and one hydrogen (1)	2	2	2	6				
	¹ H NMR suggests $\stackrel{\text{H}}{\circ}$ and $\stackrel{\text{O}}{\circ}$ (1) structure of W must be $\stackrel{\text{O}}{\circ}$ (2) (1)								
	structure of W must be $0 \\ C - C \\ 0 - H$ (1)								
	Question 10 total	6	8	6	20	2	1		

	Overtion	Marking datails			Marks a	available		
	Question	Marking details		AO2	AO3	Total	Maths	Prac
11	(a)	signal at 2.30 ppm due to (side-chain) alkyl protons and signal at 7.05 ppm due to aromatic protons (1) both signals are singlets so alkyl protons are all equivalent and aromatic protons are all equivalent (1) peak heights of 6 (aliphatic / methyl) and 4 (aromatic) fit the structure of 1,4-dimethylbenzene (1)		3		3		
	(b)	1:1 mole ratio \Rightarrow 0.240 mol of product expected (1) increase in mass = 0.240 × (175 – 106) = 16.6 (1)		2		2	1	
	(c)	Correct curly arrows (1) relevant lone pairs (1) partial / full charges (1)	1	2		3		
	(d)	alkaline potassium manganate(VII) / KMnO ₄	1			1		1

Overtion	Moulsing dataile	Marks available		,			
Question	Marking details		AO2	AO3	Total	Maths	Prac
(e) (i)	-о-с- Сн ₂ -о-с- Сн ₂ -о-с- Сн ₂ -о-с-		1		1		
(ii)	ring drawn on any ester linkage in repeating section in part (i) e.g. as shown	1			1		
(f) (i)	award (1) for any of following phosphorus(V) chloride / phosphorus pentachloride / PCl ₅ phosphorus(III)chloride / PCl ₃ thionyl chloride / SOCl ₂	1			1		1
(ii)	$\begin{array}{c} O \\ C \\ C \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} C \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} C \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} C \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} O \\ C \\ C \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} O \\ C \\ \end{array} \begin{array}{c} O \\ C \\ C \\ C \\ \end{array} \begin{array}{c} O \\ C \\ C \\ C \\ \end{array} \begin{array}{c} O \\ C \\ C \\ C \\ \end{array} \begin{array}{c} O \\ C \\ C \\ C \\ \end{array} \begin{array}{c} O \\ C \\ C \\ C \\ \end{array} \begin{array}{c} O $		1	1	2		
	Question 11 total	4	9	1	14	1	2

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	5	6	4	15	1	3
6	4	10	3	17	4	2
7	6	8	6	20	1	4
8	4	8	5	17	0	8
9	6	8	3	17	3	1
10	6	8	6	20	2	1
11	4	9	1	14	1	2
Totals	35	57	28	120	12	21