OXFORD AQA INTERNATIONAL A-LEVEL # CHEMISTRY (9620) ### PAPER 1 Specimen 2018 Morning Time allowed: 1 hour 30 minutes #### **Materials** For this paper you must have: - a pencil - a ruler - a calculator - a data booklet #### Instructions - use black ink or ball-point pen - answer all questions - show all your working. #### Information - The marks for questions are shown in brackets - The maximum mark for this paper is 70 marks | Please write clearly, in block capitals, to allow character computer recognition. | | | | | | |---|------------------|--|--|--|--| | Centre number | Candidate number | | | | | | Surname | | | | | | | Forename(s) | | | | | | | Candidate signature | | | | | | | | Å | Answer all questions in the spa | aces provide | ed. | | |---------|---|--|----------------|---------------|-------------| | 1 | A sample of magnesium consisting of three isotopes has a relative atomic mass of 24.31. | | | | | | | Table 1 giv | es the relative abundance of tw | vo of the isc | otopes. | | | | Table 1 | | | | | | | | Mass number of isotope | 24 | 25 | | | | | Relative abundance / % | 78.8 | 11.7 | | | 0 1 . 1 | | ormation to determine the relathe third isotope. | tive abunda | nce and hen | ce the mass | | | Give your a | nswer to the appropriate numb | per of signifi | cant figures. | [4 marks] | Mass | s number = | | | 0 1 . 2 | Describe how ions are formed in a time of flight (TOF) mass spectrometer. | | | | | | 0 1 . 2 | | | | ,acc op co. | [2 marks] | 1 . 3 | A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances. | |-------|--| | | Explain why it is necessary to ionize molecules when measuring their mass in a TOF mass spectrometer. [2 marks] | 2 | This question is about the first ionisation energies of some elements in the Periodic Table. | |---------|--| | 0 2 . 1 | Write an equation, including state symbols, to show the reaction that occurs when the first ionisation energy of calcium is measured. [2 mark] | | 0 2 . 2 | State and explain the general trend in first ionisation energies for the Period 2 elements boron to neon. [3 marks] Trend Explanation | | 0 2 . 3 | There is a similar general trend in first ionisation energies for the Period 5 elements indium to xenon. State how tellurium deviates from this general trend and explain your answer. [3 marks] | | | | | 0 2 . 4 | Suggest why the first ionisation energy of xenon is lower than the first ionisation energy of krypton. [1 mark] | | | | 0 2 . 5 **Table 2** below gives the successive ionisation energies of an element. Table 2 First Second Third Fourth Fifth Ionisation energy / kJ mol⁻¹ 10543 738 1451 7733 13630 Deduce the group in the Periodic Table that contains this element. [1 mark] Identify the element that has a 5+ ion with an electron configuration of $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}4s^2\ 4p^6\ 4d^{10}$ 0 2 . 6 [1 mark] | 3 | When heated, iron(III) nitrate ($Mr = 241.8$) is converted into iron(III) oxide, nitrogen dioxide and oxygen. | | |---------|--|---| | | $4Fe(NO_3)_3(s) \rightarrow 2Fe_2O_3(s) + 12NO_2(g) + 3O_2(g)$ | | | | A 1.48 g sample of iron(III) nitrate was completely converted into the products shown. | | | 0 3 . 1 | Calculate the amount, in moles, of iron(III) nitrate in the 1.48 g sample. | | | | Give your answer to 3 significant figures. [1 mark] | | | | | - | | 0 3 . 2 | Calculate the amount, in moles, of oxygen gas produced in this reaction. [1 mark] | | | | | - | | 0 3 . 3 | Calculate the volume, in m³, of nitrogen dioxide gas at 293 °C and 100 kPa produced from 1.48g of iron(III) nitrate. | | | | The gas constant is $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$. | | | | (If you have been unable to obtain an answer to Question 3.1 you may assume the number of moles of iron(III) nitrate is 0.00893. This is not the correct answer.) [4 marks] | | | | | | | | | - | | | | - | | | | • | | | | - | | | | | | 0 3 . 4 | Suggest a name for this type of reaction that iron(III) nitrate undergoes. [1 | mark] | |---------|---|--------------------| | 0 3 . 5 | Suggest why the iron(III) oxide obtained is pure. Assume a complete reaction [1 | n.
mark] | 4 | Aluminium and thallium are elements in Group 3 of the Periodic Table. Both elements form compounds and ions containing halide ions. Write an equation for the formation of aluminium bromide from its elements. [1 mark] | |---------|---| | 0 4 . 2 | An aluminium bromide molecule reacts with a bromide ion to form the ${\rm AlBr_4^-}$ on. Name the type of bond formed in this reaction. Explain how this type of bond is formed in the ${\rm AlBr_4^-}$ ion.
[2 marks] | | | Explanation | | 0 4 . 3 | Aluminium bromide has a relative molecular mass of 533.4 in the gas phase. Deduce the formula of the aluminium compound that has a relative molecular mass of 533.4 [1 mark] | | 0 4 . 4 | Deduce the name or formula of a compound that has the same number of atoms, the same number of electrons and the same shape as the ${\rm AlBr}_4^-$ ion.
[1 mark] | | | | | 0 4 . 5 | Draw and name the shape of the TlF_5^{2-} ion.
[2 marks] | |---------|--| | | Shape of the TlF_5^{2-} ion. | | | Name of shape | | 0 4 . 6 | Draw the shape of the TlF_5^{2-} ion.
$\hbox{ \cite{thm1} In mark]}$ | | 0 4 . 7 | Explain why the TlF_5^{2-} ion has the shape that you have drawn in part (f)(i).
[1 mark] | | | | | 0 4 . 8 | Which one of the first, second or third ionisations of thallium produces an ion with the electron configuration [Xe] 5d ¹⁰ 6s ¹ ? | | | Tick (✓) one box. [1 mark] | | | First | | | Second | | | Third | | | | | | | | | | | | | | | | | 0 5 . 1 | This question is about enthalpy changes. Define the term standard enthalpy of form | ation, Δ _f <i>H</i> ° | | | [2 marks] | |---------|--|----------------------------------|--|---------------------|-----------| 0 5.2 | State Hess's law. | | | | [1 mark] | | | Nitrogen monoxide, NO, can be made rearranged $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) + 6 \text{ NH}_3(g) +$ | | | | | | | Table X shows some standard enthalpy o | f formation, | $\Delta_{\mathrm{f}}H^{\mathrm{e}}$ | | | | | Та | ble X | | | _ | | | Substance NH ₃ (g) | O ₂ (g) | NO(g) | H ₂ O(g) | | | | $\Delta_{\rm f} H^{\rm e}$ / kJ mol ⁻¹ – 46 | 0 | + 90 | - 242 | | | 0 5 . 3 | State why the standard enthalpy of format | ion of O ₂ (g) | is zero. | | [1 mark] | 0 5.3 | Table X shows some standard enthalpy of the ent | f formation, A | Δ _f H [®] NO(g) + 90 | H ₂ O(g) | [1 mai | | Use Table X and the equation to calculate the enthalpy change for the read | ction of | |---|--| | | [2 marks] | | | | | | | | | | | | | | | | | Enthalpy change = | kJ mol ⁻¹ | ammonia with oxygen to form nitrogen monoxide. | | 6 | Barium metal reacts with water. | |---------|---| | 0 6 . 1 | Write an equation for this reaction. [1 mark] | | 0 6 . 2 | A solution containing barium ions can be used to show the presence of sulfate ions in an aqueous solution of sodium sulfate. Write the simplest ionic equation for the reaction that occurs and state what is observed. | | | Simplest ionic equation | | | Observation | | 0 6 . 3 | State one use of barium sulfate in medicine. Explain why this use is possible, given that solutions containing barium ions are poisonous. [1 mark] | | | Explanation | | | | | | | | | | | | | | | | | 7 | A student carried out a laboratory experiment to determine the enthalpy chawhen a sample of ethanol was burned. The heat produced was used to war water in a copper calorimeter. The student found that the temperature of 75 water increased by 5.50 °C when 2.40 x 10 ⁻³ mol of pure ethanol was burned | m some
.0 g of | |---------|--|-------------------| | 0 7 . 1 | Use the student's results to calculate a value, in kJ mol ⁻¹ , for the enthalpy cl when one mole of ethanol is burned. | hange | | | (The specific heat capacity of water is 4.18 J K^{-1} g^{-1}) | | | | Deduce two reasons why the student's value for the standard enthalpy of combustion of ethanol is different from a Data Book value of –1279 kJ mol ⁻¹ [5 | marks] | 0 7.2 | The temperature of 75.0 g of water changed from 19.2 °C to 24.7 °C in the experiment. | | | | The temperature change was 5.50 °C | | | | The uncertainty of each reading of the thermometer is ± 0.1 $^{\circ}\text{C}$ | | | | What is the percentage uncertainty in the temperature change? | [1 mark] | | | Percentage uncertainty = | % | | 0 7.3 | Suggest one way that the student could reduce the percentage uncertainty ir temperature change, using the same apparatus as this experiment. | n the | |-------|---|-------| 8 | Concentrated sulfuric acid reacts with solid potassium iodide as shown in equation. | the | |---------|---|--------------------------| | | $8Nal + 9H_2SO_4 \longrightarrow 4I_2 + 4Na_2SO_4 + H_2S + 4H_2O$ | | | 0 8 . 1 | Give two observations that you would make when this reaction occurs. | | | | In terms of electrons, state what happens to the iodide ions in this reaction | n. | | | State the change in oxidation state of sulfur that occurs during this forma | tion of H ₂ S | | | and deduce the half-equation for the conversion of H ₂ SO ₄ into H ₂ S | [5 marks] | | | | | | | | | | | | _ | | | | | | | | | | | | _ | **Table 3** shows observations of changes from some test tube reactions of aqueous solutions of compounds Q, R and S with different aqueous reagents. The initial colours of the solutions are not given. Table 3 | | BaCl ₂ | AgNO ₃ | NaOH | HCI | H ₂ SO ₄ | |---|-----------------------|------------------------|--|--------------------|-------------------------------------| | Q | No change observed | Pale cream precipitate | White precipitate | No change observed | No change observed | | R | No change
observed | No change
observed | No change observed | Bubbles of a gas | White precipitate, bubbles of a gas | | S | White precipitate | No change
observed | Gas
produced
turned red
litmus blue | No change observed | No change observed | | 0 9 . 1 | Identify each of the compounds Q , R and S . You are not required to explain y answers. | our
arks] | |---------|--|--------------| | | Identity of Q | | | | Identity of R | | | | Identity of S | | | | | | | END OF QUESTIONS | NaOH. | | roduced by R with HCl and by S | |------------------|-------|------------------|--------------------------------| | END OF QUESTIONS | | | [4 | | END OF QUESTIONS | | | END OF OUTSTIONS | | | | | END OF QUESTIONS | 5 |