Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A Level

1144/01

ELECTRONICS - ET4

WEDNESDAY, 7 JUNE 2017 - AFTERNOON

1 hour

For Examiner's use only							
Question	Maximum Mark	Mark Awarded					
1.	3						
2.	6						
3.	4						
4.	7						
5.	5						
6.	13						
7.	12						
Total	50						

ADDITIONAL MATERIALS

A calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 50.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

You are reminded to show all working. Credit is given for correct working even when the final answer given is incorrect.

INFORMATION FOR THE USE OF CANDIDATES

Preferred Values for resistors

The figures shown below and their decade multiples and sub-multiples are the E24 series of preferred values.

10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91.

Standard Multipliers:

Prefix	Multiplier
Т	$\times 10^{12}$
G	$\times 10^9$
M	$\times 10^6$
k	$\times 10^3$

Prefix	Multiplier
m	\times 10 ⁻³
μ	$\times 10^{-6}$
n	$\times 10^{-9}$
р	$\times 10^{-12}$

Filters

$$f_b = \frac{1}{2\pi RC}$$

$$X_C = \frac{1}{2\pi fC}$$

$$X_L = 2\pi fL$$

$$Z = \sqrt{R^2 + X_C^2}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

$$R_{\rm D} = \frac{L}{r_{\rm r} C}$$

$$Q = \frac{2\pi f_0 L}{r_L}$$

$$Q = \frac{f_0}{B}$$

Modulation

$$m = \frac{(V_{max} - V_{min})}{(V_{max} + V_{min})} \times 100\%$$

$$\beta = \frac{\Delta f_c}{f_i}$$

$$resolution = \frac{i/p \ voltage \ range}{2^n}$$

Bandwidth =
$$2(\Delta f_c + f_i)$$

Bandwidth =
$$2(1+\beta)f_i$$

Break frequency for high pass and low pass filters

Capacitive reactance

Inductive reactance

For a series RC circuit

Resonant frequency

Dynamic resistance

Depth of modulation

Modulation index

PCM

Transmitted FM Bandwidth

Radio receivers

$$C = \frac{1}{4\pi^2 f_0^2 L}$$

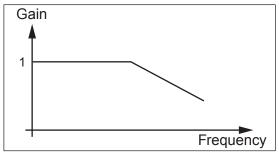
© WJEC CBAC Ltd.

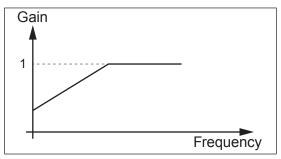
(1144-01)

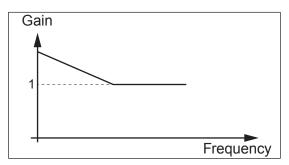
1144 010003

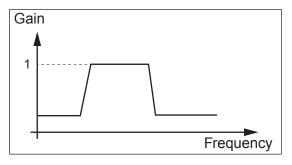
Answer all questions.

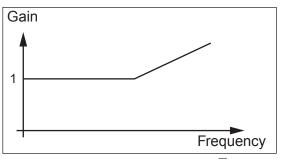
1. Modern communications systems use different types of signal filters.

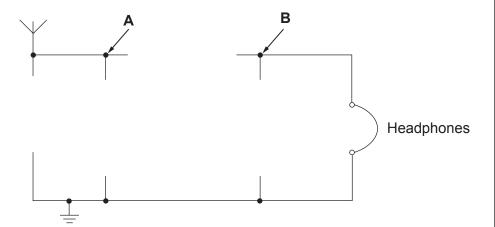

Match the type of filter to its characteristic by drawing a line between them.


[3]


Type of Filter


Band Pass Filter

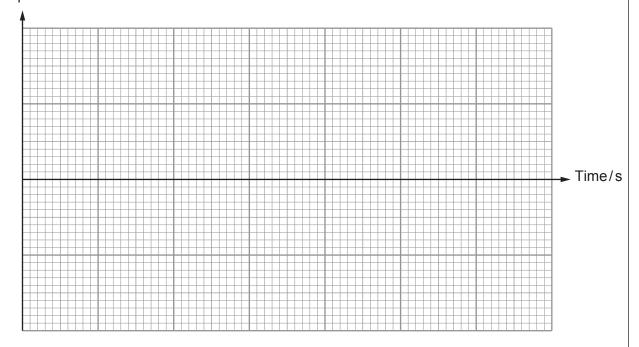

Filter Characteristic


Turn over.

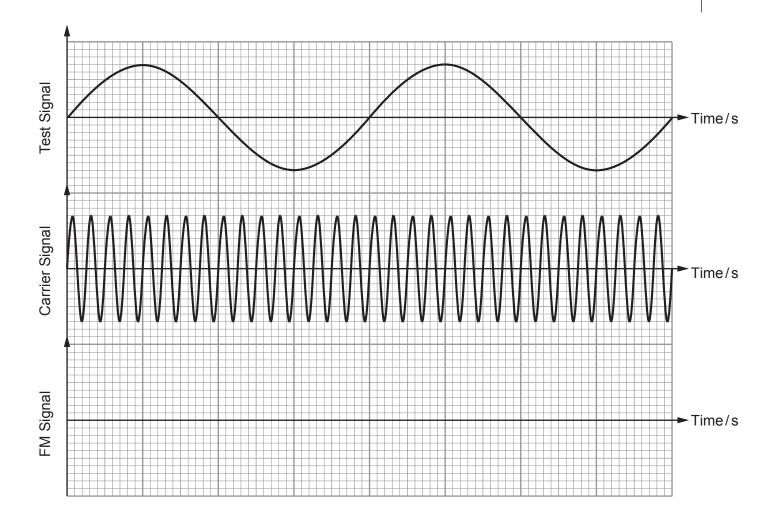
Low Pass Filter

2. (a) Complete the circuit diagram for a simple radio receiver.

Examiner only


(b) (i) On the axes below, draw the signal you would see at point **A** on the completed circuit diagram of the simple radio receiver. [1]

Amplitude



(ii) On the axes below, draw the corresponding signal you would see at point **B** on the completed circuit diagram of the simple radio receiver. [1]

Amplitude

- 3. Frequency modulation (FM) is a very popular way of modulating radio signals.
 - (a) The test signal below is used to frequency modulate the carrier. Use the axis provided to draw the FM Signal. [2]

1144

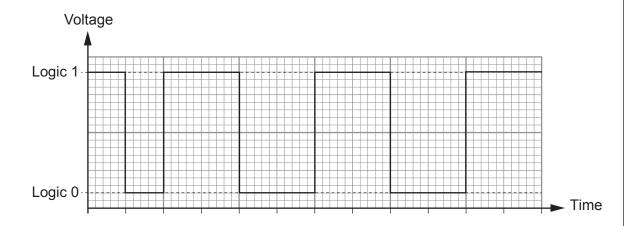
		$0\mathrm{MHz}$ carrier is frequency modulated by a $25\mathrm{kHz}$ sinusoidal lation index β = 5. Determine:	test signal using a
(i	i)	the frequency deviation of the carrier $\Delta f_c; \;$	[1]
••••			
(ii	i)	the bandwidth of the resulting FM waveform.	[1]
(ii	i)	the bandwidth of the resulting FM waveform.	[′
•····			

4. The ASCII code is an internationally agreed method of coding alphanumeric characters in computer systems.

The following table gives the ASCII code for a number of different characters.

Character	ASCII Code
1	0110001
2	0110010
3	0110011
4	0110100
5	0110101

(a) A computer system uses **even** parity. Start, stop and parity bits have to be added before the signal can be transmitted.

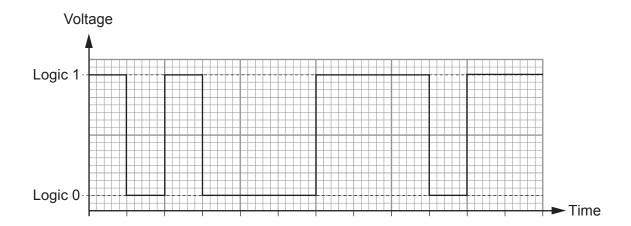

(i) What is the purpose of the parity bit?

[1]

(ii) What is the value of the parity bit when character, '4' is transmitted?

[1]

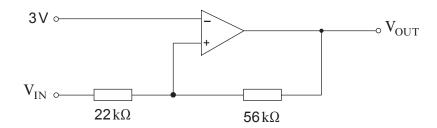
(b) The graph below shows the signal for a character, received at the end of the transmission link using even parity.


(i) **Label** the start, stop and parity bits.

[2]

(ii) Using the table above, determine what character was received.

[1]


.....

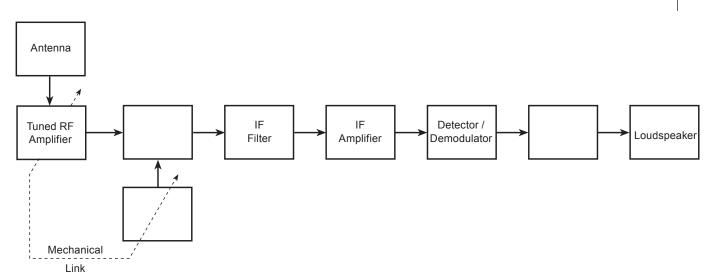
(i)	Explain	why	the	receiving	equipment	would	have	accepted	the	data	as	being
	correct.											[1]

(ii) Describe how the system could be improved to eliminate this limitation. [1]

5. (a) A Schmitt trigger circuit is shown in the following circuit diagram.

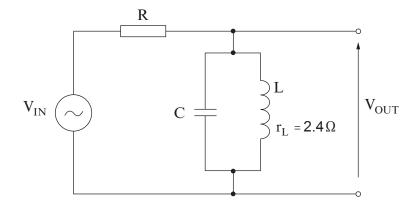
The op-amp saturates at \pm 10 V.

(i)	Calculate the value	of $ m V_{IN}$ which ca	uses $ m V_{OUT}$ to ch	nange from +10\	/ to –10 V. [2]
					······
•••••					······
•••••					······
					······
•••••					······
•••••					·····

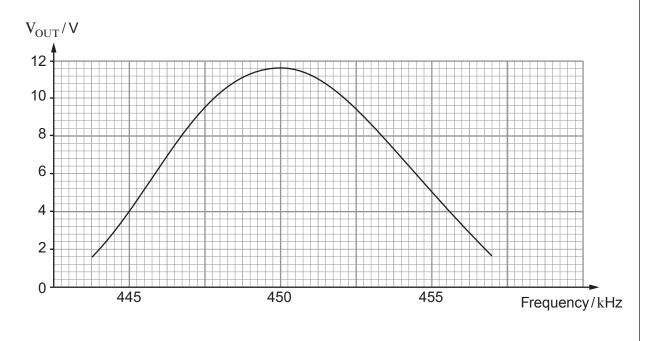

Examine	
only	

(ii)	Calculat	te the valu	e of $ m V_{IN}$ w	hich cause	es V _{OUT} to	o change	from –10	V to +10	V. [2]
•••••									•••••••••••••••••••••••••••••••••••••••
									••••••
									· · · · · · · · · · · · · · · · · · ·
			•••••						•
									•••••••••••••••••••••••••••••••••••••••
								••••••	
degra	ades as it	travels al	used to re ong a trans the Schmit	smission li					
1									
2									

Examiner only


[3]

- **6.** The superhet radio receiver is an advanced radio receiver.
 - (a) Complete the following block diagram of the superhet receiver.



(b) An engineer has designed an IF filter for a Superhet receiver.

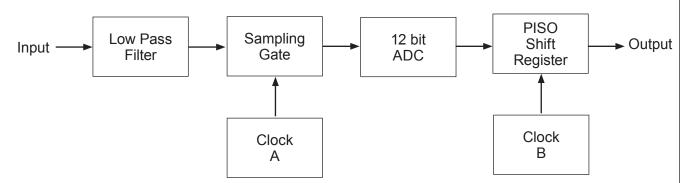
The following circuit diagram shows the IF filter connected to a signal generator with $V_{\rm IN}$ set to provide a constant 12 V. The inductor resistance r_L is 2.4 $\Omega.$

The graph shows the characteristic for the filter.

Determine and **show** on the graph:

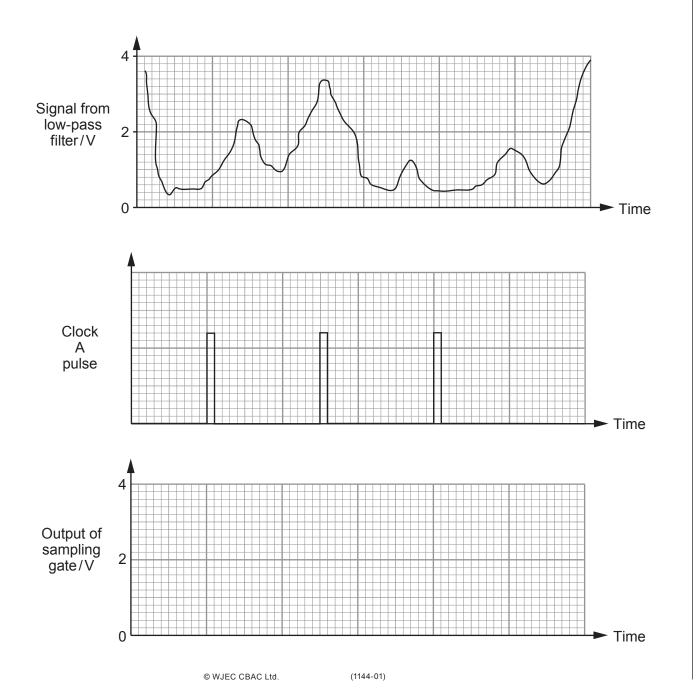
(i)	the reconant frequency:	ſ,	11
(1)	the resonant nequency,	 L	ч

(ii) the bandwidth. [2]

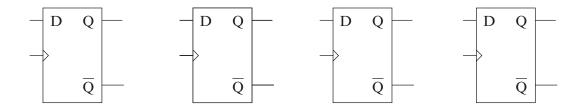

(c)	Use your approxima	from (b)	to show	by calcu	ulation that	the Q fact	tor of the fil	ter is [1]

(a)	the inductor is approximately 60 µH. (Note: If your value of Q is not between 68 and 7)	[2]

(i)	Calculate the dynamic resistance for this filter, showing all working. (Note: If your value of C is not between 1.5 nF and 2.8 nF use a value of C = 2 nF	=.) [1]
(ii)	Use your answer from <i>(f)</i> (i) to determine the value of R.	[2]
		(Note: If your value of C is not between 1.5 nF and 2.8 nF use a value of C = 2 nF


BLANK PAGE

7. The following block diagram shows a Pulse Code Modulation (PCM) Transmitter.


(a) The output of the low pass filter and the output of clock A are shown below. Complete the graph to show the output of the sampling gate.

[2]

(b)	The signal from the low pass filter contains frequencies in the range 20 Hz to 19 kHz.					
	(i)	What is the relationship between the input signal frequency range and the minimum sampling frequency required to allow the signal from the low pass filter to be reconstructed at the receiver? [1]				
	(ii)	What is the minimum frequency that can be used for clock A in this transmitter?[1]				
(c)	(i)	Clock B must operate at a higher frequency than clock A for the system to work properly. Explain why this is the case. [1]				
	(ii)	State the minimum frequency of clock B to ensure this system operates correctly. [1]				
(d)		12-bit Analogue to Digital Converter (ADC) has an input voltage range of 0 to 9V. It is the resolution of the system? [2]				

(e) A PCM **receiver** requires a serial-in-parallel-out shift register (SIPO) which can be constructed using D-Type flip-flops.

Clock

On the diagram above:

- (i) draw the connections needed to make the first 4-bits of a SIPO shift register; [2]
- (ii) label the signal input; [1]
- (iii) label the signal outputs. [1]

END OF PAPER

BLANK PAGE