Surname

S18-1145-01

2

wjec

Other Names

GCE A Level – LEGACY

ELECTRONICS – ET5

WEDNESDAY, 13 JUNE 2018 - AFTERNOON

1 hour 30 minutes

1145/01

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	13				
2.	12				
3.	10				
4.	8				
5.	7				
6.	7				
7.	5				
8.	8				
Total	70				

ADDITIONAL MATERIALS

A calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 70.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

You are reminded to show all working. Credit is given for correct working even when the final answer given is incorrect.

INFORMATION FOR THE USE OF CANDIDATES

Preferred Values for resistors

The figures shown below and their decade multiples and sub-multiples are the E24 series of preferred values.

Multiplier

 Prefix

Multiplier

10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91.

Prefix

Standard Multipliers

Į					•		
	Т	$\times 10^{12}$		m	$\times 10^{-3}$		
	G	$\times 10^9$		μ	$\times 10^{-6}$		
	М	$\times 10^{6}$		n	$ imes 10^{-9}$		
	k	$\times 10^3$		р	$\times 10^{-12}$		
Alternating Voltages	$V_0 = V_{rms} \sqrt{2}$	2					
Silicon Diode	$V_F \approx 0.7 V$						
Operational amplifier	$G = -\frac{R_F}{R_{IN}}$			Inverting ampl	ifier		
	$G = 1 + \frac{R_F}{R_1}$			Non-inverting	amplifier		
	$V_{OUT} = V_{DII}$	$_{\rm FF}\left(rac{{\bf R}_{\rm F}}{{\bf R}_{\rm l}} ight)$		Difference am	plifier		
	$V_{OUT} = -R_F \Big($	$V_{OUT} = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$			Summing amplifier		
	$V_L \approx V_Z \left(1 + \right)$	$\left(\frac{\mathbf{R}_{\mathrm{F}}}{\mathbf{R}_{\mathrm{I}}}\right)$		Stabilised pow	ver supply		
Emitter follower	$V_{OUT} = V_{IN}$	-0.7V					
Filters	$f_b = \frac{l}{2\pi RC}$			Break frequen and low pass	cy for high pass filters		
	$X_{C} = \frac{1}{2\pi fC}$			Capacitive rea	ctance		
Thyristor phase contro	$\phi = \tan^{-1} \frac{R}{X_C}$						
	$\tan\phi = \frac{R}{X_{c}}$						
Signal conversion	resolution =	$\frac{i/p \text{ voltage range}}{2^n}$	<u>)</u>	ADC			
Power amplifier	$P_{MAX} = \frac{V_S^2}{8R}$	2 L		where V_{S} is th voltage	e rail-to-rail		

PIC Information

The PIC programs include 'equate' statements that define the following labels:

Label	Description
PORTA	input / output port A
PORTB	input / output port B
TRISA	the control register for port A
TRISB	the control register for port B
STATUS	the status register
INTCON	the interrupt control register
W	the working register (= h '0')
F	the file register (= h '1')
RP0	the register page selection bit 0
Z	the zero flag status bit
GIE	the global interrupt controller bit
INTE	the external interrupt enable bit

Pinout for 16F84 PIC IC:

RA2 C C C C C C C C C C C C C C C C C C C	RA0 CLK IN CLK OUT VDD RB7 RB6 RB5 RB5 RB4
---	--

List of commands:

Mnemonic	Operands	Description
bcf	f, b	Clear bit b of file f
bsf	f, b	Set bit b of file f
btfss	f, b	Test bit b of file f, skip next instruction if bit is set
call	k	Call subroutine k
clrf	f	Clear file f
goto	k	Branch to label k
movf	f, d	Move file f (to itself if d = 1, or to working register if d = 0)
movlw	k	Move literal k to working register
movwf	f	Move working register to file f
retfie		Return from interrupt service routine and set global interrupt enable bit GIE

Comparison of TASM and MPASM languages:

Vers	sion	TASM	MPASM
N 1 /	Decimal	153	d'153'
Number system	Number system Hex	\$2B	h'2B' or 0x2B
notation	Binary	%10010110	b'10010110'
		.equ	equ
Oncodo	Notation	.org	org
		.end	end
		label:	label

Structure of the INTCON register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF

Structure of the STATUS register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRP	RP1	RP0	то	PD	Z	DC	С

[4]

Answer all questions.

1. A synchronous counter generates a sequence of states governed by the Boolean equations:

$$D_{A} = \overline{B}$$
$$D_{B} = \overline{B \cdot A}$$
$$D_{C} = C \leftrightarrow B$$

(a) Complete the circuit diagram for the counter.

(b) The main sequence for this counter is shown below:

Three different situations can occur when the system powers up. It can start either in an unused state, a stuck state or a main sequence state.

[3]

[3]

[3]

For each of the following, determine which situation applies by completing the corresponding table, using the Boolean equations or otherwise.

5

(i) On power up, the counter starts in the **011** state.

Clock	Current Outputs			N	ext Outpu	ts
pulse	С	В	Α	D _C	D _B	D _A
1	0	1	1			
2						

Type of state (main sequence, unused or stuck state):

(ii) On power up, the counter starts in the **010** state.

Clock	Cu	rrent Outp	uts	N	ext Outpu	ts
pulse	С	В	Α	D _C	D _B	D _A
1	0	1	0			
2						

Type of state (main sequence, unused or stuck state):

(iii) On power up, the counter starts in the **001** state.

Clock	Cu	rrent Outp	uts	N	ext Outpu	ts
pulse	С	В	Α	D _C	D _B	D _A
1	0	0	1			
2						

Type of state (main sequence, unused or stuck state):

1145 010005

© WJEC CBAC Ltd.

(a) A hi-fi system contains a filter to intensify the low-frequency content in the audio signal.
 What kind of filter is this? [1]

3. A strain gauge **S** is fixed to the top surface of a long metal beam, used in the construction of a motorway bridge. It monitors bending of the beam. When under no stress, its resistance is 350Ω .

Examiner only

It is connected as shown below:

- 9
- (ii) The design is found to be flawed as the voltmeter reading is affected by temperature changes in the beam. Complete the following circuit diagram to show a modification that can eliminate this and describe the important features of our modification. [3]

(b) A difference amplifier is added to increase the sensitivity of the system.It has a voltage gain of 100.

Part of the difference amplifier circuit is shown below.

(i) Complete the circuit diagram, including labels to show the resistance of all resistors. [3]

(ii) Add labels P and Q to show how the bridge circuit is connected to the difference amplifier.
 The voltmeter reading should decrease when the resistance of the strain gauge increases.
 [1]
 (iii) Calculate the voltmeter reading when the conditions are those specified in part (a).
 [1]
 [1]
 WJEC CBAC Ltd.
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)
 (115-01)

BLANK PAGE

11

Turn over.

A microcontroller controls the heating and lighting in an office and warns of a possible fire. It 4. monitors signals from a temperature sensor T, a light sensor L and a smoke sensor S.

T and L are used in the heating and lighting control program, developed from the flowchart shown below.

(b) The smoke sensor S triggers an interrupt on Port B, bit 0.

(a)

Complete the instructions to clear the INTF interrupt flag and enable this interrupt, while disabling all other interrupt sources. [2]

movlw	b''
movwf	INTCON

Examiner only

[1]

- (c) The following connections are in place:
 - all five bits of Port A have active-high LEDs attached;
 - the reset switch is connected to Port B bit 2;
 - sensors T and S and all output devices are connected to other bits of Port B.

When the smoke alarm triggers an interrupt:

- the LEDs connected to bits 1 and 3 of Port A light for three seconds;
- they then turn off;
- the LEDs connected to bits 0, 2 and 4 of Port A light for three seconds;
- they then turn off.

This sequence continues until the reset switch is pressed.

Here is part of the Interrupt Service Routine (ISR). It uses a subroutine called 'threesec' to create a three second delay.

201	inter	movwf	store
202		bcf	INTCON,1
203	loop		
204		movwf	PORTA
205			
206			
207		movwf	PORTA
208		call	threesec
209		btfss	PORTB,2
210		goto	loop
211		movf	store
212		retfie	

(i) Complete the ISR by adding appropriate instructions to lines 203, 205 and 206. [3]

(ii) Just before the interrupt is called, the Working Register contains the number b'00001010'.

What does it contain after the ISR is completed and the processor returns to the main program? [1]

(iii) During execution of the ISR, what does the Working Register contain just after the processor executes the instruction in line 207? [1]

A microcontroller controls the brightness of a lamp. It outputs a four-bit binary number to a linear digital-to-analogue converter (DAC). Its output drives the lamp. The circuit diagram for the DAC is shown below.

Input D is the most-significant bit (msb) of the binary number outputted by the microcontroller.

- A logic 1 signal from the microcontroller has a voltage of 8V.
- A logic 0 signal has a voltage of 0 V.
- The op-amp output saturates at +/-18 V.
- (a) What is the resistance of R_B and R_C ?

[1]

Examiner only

5.

R_C =

15

Examiner only Calculate the output voltage, $V_{DAC}\!,$ when the input is the binary number 0001. (b) [1] V_{DAC} = Calculate the maximum value of V_{DAC} that the microcontroller can create. (C) [1] Max V_{DAC} = Modify the circuit diagram below by adding: (d) (i) a second amplifier, to invert the signal V_{DAC} without changing its amplitude. (Label any resistors used with suitable values.) [2] a lamp, driven by an emitter follower based on a npn transistor, controlled by the (ii) DAC. [2]

6. A thyristor is used to control the brightness of a lamp, using phase control.

16

Examiner only

7.

(1145-01)

Examiner only The upper graph shows a signal applied to the input of the power amplifier. Complete the lower graph by drawing the corresponding output signal at Z. (The input signal is shown as a dotted line.) [2] Voltage/V 6 4 2 0 Time -2 -4 -6 Voltage/V 6 4 2 0 Time -2 $^{-4}$ $^{-6}$

(ii)

BLANK PAGE