wjec cbac

GCE MARKING SCHEME

SUMMER 2018

GCE (LEGACY) ELECTRONICS - ET1 1141/1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE (LEGACY)

ELECTRONICS - ET1

SUMMER 2018 MARK SCHEME

Question			Marking detail	Marks available
1.	(a)		$D = B + \overline{A}$ E = C.B $Q = \overline{C.B.(B + \overline{A})} \text{ or } (\overline{B + \overline{A})} + \overline{C.B} \text{ or } \overline{B.A} + \overline{C.B}$ ($\overline{C.B}$ can be replaced by $\overline{C} + \overline{B}$ in either alternative answer)	1 1 1
	(b)	(i)	$\begin{array}{ll} (A.\overline{C}).(B + A) & DeMorgan's \ theorem \ correctly \ applied \\ Allow \ double \ bar \ over \ each \ term \\ A.B.\overline{C} + A.\overline{C} & allow \ A.B.\overline{C} + A.\overline{C}.A \\ A.\overline{C}(B + 1) & either \ or \ both \ simplifications \\ A.\overline{C} & Simplest \ expression \ stated \end{array}$	1 1 1
			Input B is redundant (mark can only be awarded if results from correct analysis)	1
				7
2.	(a)	(i) (ii)	$P = \overline{C}.B.\overline{A} + C.\overline{B}.\overline{A} + C.B.\overline{A}$ BA C 00 0 1 1 1 1 1 1 1 1 1 1	1
		(iii)	Correct transfe ta to Karnaugh map $P = B.\overline{A} + C.\overline{A}$ or $P = \overline{A}.(B + C)$ 1 mark for each correctly identified group from table drawn (max. 2) Input A connected to input of NOT gate. <i>Then either</i> Inputs B and C connected in inputs of OR gate Outputs of NOT and OR connected to P using AND gate <i>OR</i> <i>Inputs B and C each to a separate AND gate with output of</i> <i>NOT A</i> <i>Outputs of AND gates to P via an OR gate</i> A A B A C A B A C A B A C A	1 2 1 1 1 0 7 1 1

Question		'n	Marking detail	Marks available
	(b)		B Q C Q Input B shown with redundant gates or as a direct connection to final NAND gate. Input C connected through NAND invertor to final NAND gate.	1 1
				9

Question			Marking detail						Marks available
3.	(a)	(i)				1		-	
		()		С	В	А	Q		
				0	0	0	0		
				0	0	1	1		
				0	1	0	0		
				0	1	1	0		
				1	0	0	1		
				1	0	1	1		
				1	1	0	0		
				1	1	1	0		
			Column Q c	orrect		1	u.	-	1
		(ii)	$Q = \overline{C}.\overline{B}.A$ or $C.\overline{B} + \overline{B}$	+ C. B. A - B.A or B.	+ C. . .(C + A)				1
	(b)		D_0, D_2, D_3, I	D_6 and D_7	to 0 V				
			Completely	D_5 to 5 v correct 1	mark (a	allow ecf	from (a))		1
	(c)		LED (correct	t orientatio	on) and se	eries resis	stor conn	ected	1
			between pov Between Q a	ver rail ar and <u>0 V</u>	nd Q				1
									5

Question				Marks available						
4.	(a)		All 3 clock inputs correctly connected \overline{Q} outputs to D (all 3 correct) Q outputs to correct terminals						1 1 1	
	(b)	(i)		C	в	Δ	x	Y		
				0	0	0	1	1		
				0	0	1	1	0		
				0	1	0	0	1		
				0	1	1	0	0		
				1	0	0	1	0		
				1	0	1	1	1		
				1	1	0	0	0		
				1	1	1	0	1		
			One ma	ark eac	h corre	ect colu	umn X	and Y		2
		(ii)	A pulses twice	clock o	duratio	n starti	ng on i	the fire	st falling edge	1
			Both pulses B a Both pulses B a X inverse of B Y logic 1 for firs pulses of A. Al of A. (X and Y ecf fro	and C and C st two s llow bo om tab	correct correct space: d if X (t durati t timing s of A a or Y sta	on I. and the arting f	en logi rom fir	c 1 for last two st falling edge	1 1 1 1
	(c)		Convert frequency to time period using $T=1/f = 1/0.2 = 5 s$ C has a duration of 4 pulses. $4x5 = 20 s$					1		
										12

Question			Marking detail	Marks available
5	(a)		The transition gate produces edge-triggering /produces a very short pulse.	1
	(b)		An odd number of NAND's as series NOT gates Correct connections to the final NAND gate (Final NAND invertor is neutral) e.g.	1 1
	(c)			
			A B X Y	
			1 1 0 1	
			0 1 1 0	
			0 0 1 1	
			X has correct response to SET (when A=0 initially)	1
			Y has correct response to RESET (when B=0 initially) (mark for 1 st four lines only) Correct last line	1
				6
6.	(a)	(i)	S (no mark) ' <u>as it has the higher slew rate'</u> (or both time calculations shown)	1
		(ii)	3.6 x 10 ⁶ /400 (correct substitution and re-arrangement) 9000 (Hz) or 9 k(Hz) or 0.009 M(Hz)	1 1
	(b)		Downward sloping line starting at 2 µs Correct gradient (passes through 4,-9) Saturates at -18 V	1 1 1
	(c)	(i)	12.5/2.5 = (-) 5	1
		(ii)	Resistor connected between output and inverting input Resistor connected between V_{IN} and inverting input Non-inverting input connected to 0 V (NIA = 1 mark)	1 1 1
		(iii)	Ratio $R_F/R_{IN} = 5$ and both $1 k\Omega$ or greater (ecf (i) and (ii)) Clearly labelled on diagram (accept in written answer if unambiguous). Full credit for NIA values if correct wrt earlier parts.	1 1
				12

Question			Marking detail	Marks available
7.	(a)		Max. gain = 41 Min. gain = 1	1
	(b)		Bandwidth measured at $20/\sqrt{2}$ or 0.7x 20 (\cong 14)	1
			125 (kHz) range 125-127	1
	(c)		14/30 or 14000/30 (correct substitution)	1
			0.466 or 0.46 or 0.466 mV (rounded-up answers e.g. 0.467 award 1-mark total as this will go over saturation voltage)	1
	(d)	(i)	Voltage gain reduces	1
		(ii)	Input voltage increases	1
		(iii)	Gain- bandwidth product remains constant / unchanged	1
				9

1141/1 GCE (LEGACY) ELECTRONICS - ET1 SUMMER 2018