

GCE A LEVEL MARKING SCHEME

AUTUMN 2020

A LEVEL ELECTRONICS – COMPONENT 1 A490U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS A LEVEL ELECTRONICS - COMPONENT 1

AUTUMN 2020 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark (except for the extended response question).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward

	Questia						5.4	orkin	a da				Ma	arks avail	able	
	Questio)[]					IVI	arkin	g ae			A01	AO2	AO3	Total	Maths
1.	(a)	(i)							ڳر کر			1	1	2	4	
			Corre Corre Corre	ect AN ect AN ect OF ect ca	ND co R cor ncell	onver onvers ation	sion sion ion - 1 p	oair oi	ıly		[1] [1] [1] [1]					
		(ii)	Mark B 0 1 1 J = A L = J Q = I	A 0 1 0 1 0 AND OR	J 1 0 1 0 K = B A	K 1 0 0 B ND M	L 0 1 0	M 1 1 1 NAN	Q 1 1 1 D A		[1] [1] [1]	1	2		3	2
		(iii)	L = E M = (Q = (One	B A B A B A mark) or (+ B per t	B.Ā .Ā) o ærm	+ B or (Ā.	. Ā + . Ē + /	В.А) Ā.В	· A . B)	[3]	1	2		3	2

Question					Marking dataila		Ma	arks avail	able	
Question					Marking details	Marks available AO1 AO2 AO3 Total 1 1 2 2		Maths		
(b)	С	В	Α	Q						
	0	0	0	0						
	0	0	1	1						
	0	1	0	1						
	0	1	1	0						
	1	0	0	1		1	1		2	
	1	0	1	0		I	1		2	
	1	1	0	0						
	1	1	1	1						
	Rows Rows	s 0 to s 4 to	3 col 7 col	rrect rrect	[1] [1]					
	Ques	stion	1 tot	al		4	6	2	12	4

	Quantin		Marking dataila			Ма	arks avail	able	
	Juestio	n	Marking details		AO1	AO2	AO3	Total	Maths
2.	(a)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1] [1] [1] [1]	2	2		4	2
	(b)		A.B + A + A . B = A (1+B+B) – factorisation (or equivalent Answer = A	:) [1] [1]	1	1		2	2
	(c)		$Q = \overline{(\overline{A + \overline{B}}) + \overline{B}} = (A + \overline{B}) . B = A . B$ Use of DMT Answer = A. B	[1] [1]	1	1		2	2
	(d)	(i)	C B A Q 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0	[2]	1	1		2	

0.00	otion	Marking dataila			Marks available				
Que	suon	Marking details		A01	AO2	AO3	Total	Maths	
	(ii)	Q = C.B.A+C.B.A+C.B.A (or simplified version) Any valid simplification Answer: Q = C.B+B.A	[1] [1] [1]	1	2		3	2	
	(iii)	Contract and C.B term B.A term Action Correct use of OR gate	[1] [1] [1]			3	3		
		Question 2 total		6	7	3	16	8	

	0			Maulsin et al a fa				Ма	arks avail	able	
	Questic	n		warking deta	details		AO1	AO2	AO3	Total	Maths
3.	(a)		Property	Ideal value]						
			Input impedance	Infinite	-						
			Output impedance	Zero							
			Slew-rate	Infinite			1			1	
			CMRR	Infinite							
			All four properties cor	rect		[1]					
	(b)		Voltage at non-invertin Voltage at inverting in Use of voltage divider Output in positive satu	ng input = 5V (put = 4V (or eq formula uration, so red	or equivalent) quivalent) LED lit.	[1] [1] [1] [1]	2	2		4	3
	(C)	(i)	Voltage gain = [-]15 -	ignore sign		[1]	1			1	
		(ii)	Voltage/V	Corre (or 50 Inver	ect amplitude = 0 0mV x (i)) ted	.75V [1] [1]	1	1		2	1
		(iii)	Currents are equal Use of virtual earth Of	R infinite input	impedance	[1] [1]	1	1		2	1
			Question 3 total				6	4	0	10	5

	Questia		Marking dataila			Ма	arks avail	able	
	Questic	011	Marking details		AO1	AO2	AO3	Total	Maths
4.	(a)		Overall gain = $100 \times 100 = 10000$ Gain-bandwidth product is fixed for the op-amp used. Where the gain is large, the bandwidth is small. Cascading two amplifiers gives an overall gain equal to the product of their gains but a bandwidth equal to the smaller, (or equivalent answer.)	[1]	1	1		2	1
	(b)		Feedback resistor to inv. input R_1 from inv. input to 0V Input to non-inv. input	[1] [1] [1]	3			3	
	(C)		R _F = 99 x R ₁ All resistors > 1kΩ Diagram labelled with resistor values	[1] [1] [1]	1	1	1	3	1
	(d)	(i)	Bandwidth of B equals that of the preamplifier (=15kHz) as both A and B have the same voltage gain, (=100). Gain-bandwidth product = 100 x 15000 = 1.5MHz	[1] [1]	1	1		2	1
		(ii)	At bandwidth limit, voltage gain = 0.7 x max. voltage gain = 70	[1] [1]	1	1		2	1
	(e)		Voltage gain at $1 \text{kHz} = 100 \text{ x} 100 = 10000$. Input amplitude must be less than, or equal to $12/10000$ (= 1.2mV) to avoid saturation.	[1] [1]		2		2	1

	Quaatia		Marking details			Marks available						
,	Questio)(1)	Marking details		AO1	AO2	AO3	Total	Maths			
	(f)		Input to amp A = 1mV, so input to amp B = 100x1mV= 100mV Output of B = 10V Using slew-rate = $2 \pi f V_P$ minimum slew-rate = $2.\pi.(10 \times 10^3).(10) = 630$ kV/s (Accept 628.3kV/s)	[1] [1] [1]	1	2		3	2			
			Question 4 total		8	8	1	17	7			

	Ouestie		Marking dataila			M	arks avail	able	
	Questic	DU	marking details		AO1	AO2	AO3	Total	Maths
5.	(a)		Using P = E / t, power = 54 / 3 [1 = 18W [1	1] 1]	1	1		2	1
	(b)	(i)	Advantage such as: • can be regenerated; [1	1]	1			1	
		(ii)	Advantage such as: • lack of quantisation noise; [1	1]	1			1	
	(C)		Advantage such as several signals share the communication medium, increasing data throughput. [1	n 1]	1			1	
	(d)	(i)	Frequency Channel 4 Channel 3 Channel 2 Channel 2 Channel 1 Time Channels occupy separate frequency bands [1 Channels continuous wrt time [1]	1] 1]	2			2	
		(ii)	Using N_{CH} = available bandwidth / channel bandwidth, required bandwidth = N_{CH} x channel bandwidth [1 = 4 x 5 GHz = 20GHz [1]	1] 1]	1	1		2	1
	(e)	(i)	Overall power gain = $36 + (50 \times -1.2) + 36 = +12dB$ [1]Power at $\mathbf{B} = P_{OUT} = P_{IN} \times 10^{Gaiin/10}$ [1]= $0.1 \times 10^{1.2} = 1.6 \text{mW}$ [1]	1] 1] 1]	1	2		3	2

Questia	n	Marking dataila	Mar		arks avail	ks available			
Questio	1	Marking details		A01	AO2	AO3	Total	Maths	
	(ii)	SNR = $10 \times \log_{10}(\text{signal power / noise power})$ = $10 \times \log_{10}(0.1 / .001)$ = $+20 \text{dB}$	1] 1]	1	1		2	1	
	(iii)	Attenuation reduces the signal power so SNR decreases [1]	1			1		
		Question 5 total		10	5	0	15	5	

	Ourseti		Merking detaile		M	arks avail	able	
	Questi	on	Marking details	AO1	AO2	AO3	Total	Maths
6.	(a)	(i)	Lowest sampling freq. = 2 x highest signal freq. = 30kHz [1]	1			1	1
		(ii)	The higher the sampling frequency, the greater the number of samples that need processing and storing and so the more complex the electronic system, (or equivalent answer). [1]	1			1	
	(b)	(i)	Resolution = 250 / 256 mV [1] = 0.98mV (Accept 1mV) [1]	1	1		2	1
		(ii)	Reduce reference voltage, V _{REF} (or equivalent answer). [1]	1			1	
		(iii)	Using no. of resistors = 2^n , where n = no. of bits in output, [1] 256 = 2^8 , so that each sample contains n = 8 bits. [1]	1	1		2	1
		(iv)	The analogue input voltage exceeds the ADC input voltage range, i.e. 250mV, (or equivalent answer). [1]	1			1	
	(c)		Sampling rate = 35kHz, - 35000 samples per second.In 2 minutes, (120s) 120 x 35000 = 4 200 000 samples[1]Each sample is 8 bits long, so 33.6 Mbits are needed.[1]		2		2	2

Questi	<u></u>	Morking dataila			M	arks avail	able	
anesu	on			A01	AO2	AO3	Total	Maths
(d)	(i)	Resistor $R_4 = 64k\Omega$	[1]		1		1	1
	(ii)	All inputs are 0V except for A , which is 10V. Voltage gain on channel A = $-2 / 512 = -3.9 \times 10^{-3}$ Hence output = $(-3.9 \times 10^{-3}) \times 10 = [-]39$ mV (ignore sign)	[1] [1]		2		2	2
	(iii)	Resistor $R_4 = 64k\Omega$ All inputs are 0V except for A , which is 10V. Voltage gain on channel $A = -2 / 512 = -3.9 \times 10^{-3}$ Hence output = $(-3.9 \times 10^{-3}) \times 10 = [-]39mV$ (ignore sign Vour mV 0 0 0 0 0 0 0 0 0 0 0 0 0		1	2		3	2
		Question 6 total		7	9	0	16	10

	0		Merking detaile		M	arks avail	able	
	Questi	on	Marking details	A01	AO2	AO3	Total	Maths
7.	(a)	(i)	The vehicle should stop at segment E [1]	1			1	
		(ii)	Strip 3_ 2_ 1_ Segment: G H Segment G correct [1] Segment: G H		2		2	2
		(iii)	Pure binary could lead to misleading results at a boundary between segments. There, when more than one bit changes state, spurious, erroneous readings could occur. As a result, the vehicle could determine its position incorrectly. [1]	1			1	
		(iv)	Number of storage locations = 50Number of locations addressed by 'n' bits(and so 'n' strips) = 2^n Hence, 'n' = 6 - there needs to be 6 strips.[1]		2		2	2
	(b)	(i)	Voltage across $R_1 = 5 - 1.8 = 3.2V$ [1] Current through $R_1 = 40mA$ [1] Using Ohm's law, $R_1 = 3.2 / 40 \times 10^{-3} = 80\Omega$ [1]		2		2	2
		(ii)	Voltage drop across $R_2 = 3.7 - 0.7 = 3.0V$ [1] Using Ohm's law, current through $R_1 = 3.0 / 1 \times 10^3 = 3mA[1]$		2		2	2

Question		Marking dataila		Marks available					
Questio	חכ	marking details		AO1	AO2	AO3	Total	Maths	
	(iii)	Collector current (through R_3) = 60 x 3mA = 180mA [7 Voltage drop across R_3 = 27 x 180 x 10 ⁻³ = 4.86V [7 Remaining voltage across T (i.e. at B) = 5 - 4.86 = 0.14V [7 (Allow ecf from (ii)		3		3	3		
(C)	(i)	Input voltage, $V_{GS} = 3 + (I_D / g_m) = 3.4V$ Evidence of drain current e.g.4/5Use of rearranged formulaCorrect answer	1] 1] 1]	1	2		3	3	
	(ii)	Power dissipated = 0.8 ² x 3.5 x 10 ⁻³ = 2.2mW Use of formula [7 Correct answer [7	1] 1]	1	1		2	2	
		Question 7 total		4	14	0	18	16	

Question			Marking details			Marks available					
		DU				AO2	AO3	Total	Maths		
8.	(a)		Frequency f = c / λ = 10GHz Correct label on spectrum	[1] [1]	1	1		2	1		
	(b)		Modulated carrier Modulated carrier 0.5 AM waveform Correct signal frequency Correct depth of modulation	[1] [1] [1]	1	2		3	2		
	(C)	(i)	L and C in parallel Series resistor	[1] [1]	2			2			
		(ii)	C = 1 / (4 $\pi^2 f^2 L$) = 50nF	[1] [1]	1	1		2	2		
		(iii)	$R_D = 1 \times 10^{-5} / 0.3 \times 50 \times 10^{-9}$ = 667 Ω Use of formula	[1] [1]		2		2	2		

Question			Marking details			Marks available					
)[]				AO2	AO3	Total	Maths		
		(iv)	$Q = 2 x \pi x f_0 x L / r_L = 47$ Use of formula Bandwidth = f ₀ /Q = 225 x10 ³ / 47 = 4.79kHz Use of formula	[1] [1] [1]		4		4	4 4		
			Question 8 total		5	10	0	15	11		

Question			Marking details			Marks available					
		חכ				AO2	AO3	Total	Maths		
9.	(a)	(i)	When balanced, $V_{OUT} = 0V$ [1]Voltage at A = Voltage at B = 6V[1]Resistance of pot = resistance of strain gauge = 120Ω [1]		1	2		3	3		
		(ii)	Voltage at A is 50mV lower then voltage at B = 5.95V[1]Voltage at A = 12 / $(120 + S) \times 120$ [1]S = [$(12/5.95)\times120$]-120[1]S=122\Omega[1]		1	3		4	4		
	(b)		Voltage gain = 10 / 0.02 = 500 $R_A/R_B = 500$ $R_A = R_D$ and $R_B = R_C$ AND all resistors > 1k Ω $Input 10 - R_B - R_C$ AND all resistors > 1k Ω Inverting input circuit correct Non-inverting input correct				5	5	3		

Question	Marking details		Marks available					
Question			AO1	AO2	AO3	Total	Maths	
(C)	Introduce a second identical strain gauge positioned to experience same temperature changes but no strain 12V Strain gauge J U J U U Strain gauge U U U U U U U U U	1] 1] 1]	1	2		3		
	Question 9 total		3	7	5	15	10	

Question			Marking details	Marks available						
		n		A01	AO2	AO3	Total	Maths		
10.			Indicative content: In darkness: Thevenin equivalent circuit for light sensing unit gives V_{OC} = 12V and R_{EQ} = 100 Ω . Output current of 60mA gives a voltage drop of 6V across R_{EQ} leaving 6V across the output - the lamp lights In daylight: Thevenin equivalent circuit now gives V_{OC} = 9.6V and R_{EQ} =	AO1 AO2 AO3 Tota		Total	Maths			
			80 Ω . A current will flow through the lamp. For example, a current of 50mA would cause a voltage drop of 4V across R_{EQ} , leaving 5.6V across the lamp. The lamp will glow dimly in daylight, wasting energy and reducing the battery life. (Other approaches are possible.) Improvements -			6	6	6		
			 the light-sensing unit. The transistor boosts the current drawn from the light-sensing unit. Replace the 100Ω fixed resistor with a variable resistor so that the light level at which the lamp lights can be controlled. 							

Question	Marking details	Marks available						
Question		A01	AO2	AO3	Total	Maths		
	 5-6 marks A detailed analysis, including improvements, is given for all factors identified above. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks A general account is given of the situation in daylight and in darkness. There is an attempt to suggest improvements. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some							
	 structure. 1-2 marks The performance of the system is discussed in qualitative terms only. The candidate recognises the flaw in the design. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.							
	Question 10 total	0	0	6	6	6		

A LEVEL ELECTRONICS - COMPONENT 1

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS
1	4	6	2	12	4
2	6	7	3	16	8
3	6	4	0	10	5
4	8	8	1	17	7
5	10	5	0	15	5
6	7	9	0	16	10
7	4	14	0	18	16
8	5	10	0	15	11
9	3	7	5	15	10
10	0	0	6	6	6
TOTAL	53	70	17	140	82

A490U10-1 EDUQAS GCE A Level Electronics – Component 1 MS A20/DM