

GCE A LEVEL MARKING SCHEME

AUTUMN 2021

A LEVEL ELECTRONICS – COMPONENT 1 A490U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS A LEVEL ELECTRONICS - COMPONENT 1

AUTUMN 2021 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark (except for the extended response question).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only

ecf = error carried forward

	Question	Marking dataila		Ма	Marks available AO2 AO3 Total Marks 1 1 1 1			
	Question	Marking details	AO1	AO2	AO3	Total	Maths	
1.	(a)	NAND	1			1		
	(b)	C B A Q 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 All correct (1) 1 1		1		1		

Question	Marking dataila		Ма	rks avail	able	
Question	Marking details	A01	AO2	AO3	Total	Maths
(c)	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2		2	
	Question 1 total	1	3		4	

	Ourset		Meyling details					
	Quest	ion	Marking details	AO1	AO2	AO3	Total	Maths
2.	(a)	(i)	A (1)		1		1	
		(ii)	B (1)		1		1	
	(b)	(i)	$\overline{C}.\overline{B}.\overline{A} + \overline{C}.\overline{B}.A + C.\overline{B}.A + C.B.A$					
			All terms correct (2) Two terms correct (1)	2			2	
		(ii)	$\overline{C}.\overline{B}.(\overline{A}+A) + C.A.(\overline{B}+B)$					
			$= \bar{C}.\bar{B} + C.A$		2		2	2
			Factorisation (1) Correct simplification (1)		2		2	2
	(c)		0 0 1 1					
			0 0 1 1					
			1 0 0 0		3		3	3
			0 0 1 1					
			Each term correctly inserted into map (1) x 3					

Question	Marking dataila		Ма	rks avail	able	
Question	Marking details	A01	AO2	AO3	Total	Maths
(d)	$\int \frac{1}{1} + \frac{1}{0} + \frac{1}{1} + $		3		3	3
	Question 2 total	2	10	0	12	8

	Question	Marking dataila		Ма	rks avail	able	
	Question	Marking details	AO1	AO2	AO3	Total	Maths
3.	(a)						
		A and B to AND gate and the output to next gate (1) B to a NOT gate. The output of the NOT gate to the input of an AND gate. The other input of the AND gate from C (1) Both outputs from the AND gates to the inputs of an OR gate followed by a NOT gate (1)		3		3	
	(b)	A B C C C C C C C C C C C C C	4			4	
		Question 3 total	4	3		7	

	0				Ма	rks avail	able	
	Questi	ION	Marking details	A01	AO2	AO3	Total	Maths
4.	(a)	(i)	Dummy strain gauge to overcome any changes in other parameters e.g. Temperature. (1) Variable resistor to balance bridge circuit (1)	2			2	
		(ii)	$V_{\text{RHS}} = 12 \text{ x } 119/(120.5 + 119) = 5.962 \text{ V (1)}$ $V_{\text{LHS}} = 12 \text{ x } 120/(120 + 120) = 6.000 \text{ V or by inspection (1)}$ $V_{1} = V_{\text{RHS}} - V_{\text{LHS}} = -0.038 \text{ V (1)}$		3		3	3
	(b)	(i)	Substituting into V_{out} = Gain x (V ₁) (1) to obtain V_{OUT} = 0.76 V (1)		2		2	2
		(ii)	Using Gain = R_F/R_1 correctly (1) M = 5 k Ω (1) N = 5 k Ω and L = 100 k Ω (1)	1	2		3	2
	(c)	(i)	V_P = 1.25 V, V_Q = 2.50 V, VR = 3.75 V All three correct (2) Two correct (1)	1	1		2	2
		(ii)	Overflow when $V_{IN} > V_{REF}$ (1)	1			1	
		(iii)	Correctly using Resolution = Voltage range/ 2^n [1]Correct answer = 1.25 V (1)	1	1		2	

0	- 4!				A a mlatina an a				Marks available				
Que	stion			ľ	Marking o	letalis			AO1	AO2	AO3	Total	Maths
	(iv)	Value of	Voltage	Voltage		Voltage	Binary	v output					
		V _{IN} /V	at W/V	at X/V	at Y/V	at Z/V	В	А					
		1.40	+10	0	0	0	0	1					
		3.80	+10	+10	+10	0	1	1					

Question	Meyking dataila		Ма	rks avail	able	
Question	Marking details	AO1	AO2	AO3	Total	Maths
(d)	Indicative content:					
	 AO3 allocation – Sampling rate suitable for application. Flash converter can cope with the sampling rate. Digital ramp also suitable for sampling rate. Resolution of flash converter is poor. Improving the resolution of the flash converter is complex/expensive. For the flash ADC a calculation of the number of op amps: Number of steps = 4.5/0.1 = 45 Number of op amps 2ⁿ = 45 so n = 5.49 need 6 op amps Digital ramp more suitable for this application. 5-6 marks Considers both types of ADC in relation to the application giving a thorough analysis of the advantages and disadvantages of both. For the flash ADC a calculation of the number of op amps required should be shown. Draws appropriate conclusion. There is a sustained line of reasoning which is coherent, sustained and logically structured. The information included in the response is relevant to the argument. 			6	6	

Question	Marking dataila		Ма	rks avail	able	
Question	Marking details	AO1	AO2	AO3	Total	Maths
	 3-4 marks Considers both types of ADC in relation to the application giving some advantages and/or disadvantages though not complete. Or/ Or/ Considers one type of ADC in relation to the application giving a thorough analysis of the advantages and disadvantages of that type. For the flash ADC a calculation of the number of op amps required should be shown for the higher mark in the band. There is a line of reasoning which is partially coherent, supported by some evidence and with some structure. Mainly relevant information is included in the response but there may be some minor errors or the inclusion of some information that is not relevant to the argument. 					
	1-2 marks One type of ADC is related to the application with at least one advantage or disadvantage considered.					
	There is a basic line of reasoning which is not coherent, supported by limited evidence and with very little structure. There may be significant errors or the inclusion of information not relevant to the argument.					
	Question 4 total	9	9	6	24	11

	Ourot		Marking dataila		Ма	rks avail	able	
	Quest	ion	Marking details	A01	AO2	AO3	Total	Maths
5.	(a)	(i)	$f = 3 \times 10^8/318 (1)$ Correct answer 943 kHz (1)		2		2	2
		(ii)	Correct shape (1) High frequency carrier wave (1) Time period of 200 μs calculated or indicated on graph (1)	1 1	1		3	1
		(iii)	Depth of modulation = $((V_{max} - V_{min}) / (V_{max} + V_{min})) \times 100$ = $(300 - 100) \times 100\% / (300 + 100)$ (1) = 50% (1)		1		2	2

Ouest	QuestionMarking details(b)(i)Constant amplitude (1) Modulation correct (1)(ii)Calculation of Δf_C (1) Substitution into $\beta = \Delta f_C/f_i$ (1) Correct answer 4.17 (1)(iii)Correct use of Bandwidth = 2 ($\Delta f_C + f_i$) (1) Answer 124 kHz (1)	Marking dataila		Ма	rks avail	able	
Questi	on	marking details	AO1	AO2	AO3	Total	Maths
(b)	(i)		2			2	
	(ii)	Substitution into $\beta = \Delta f_C / f_i$ (1)	1	1		3	3
	(iii)		1	1		2	1
		Question 5 total	6	8		14	9

	Questi	~ ~	Mayking dataila		Ма	rks avail	able	
	Questi	on	Marking details	AO1	AO2	AO3	Total	Maths
6.	(a)		Amplitude					
			Amplitude 4.1 4.5 Frequency/kHz Correct graphs (1) x 2	2			2	
	(b)	(i)	Correct substitution and rearrangement into C = $1/4\pi^2 f_0^2 L$ (1) Correct value 319.8 nF (1)	1	1		2	2
		(ii)	Correct substitution into $R_D = L/r_LC$ (1) Answer 1.376 k Ω (1) [1.375 k Ω if 320 nF used]	1	1		2	1
		(iii)	Use of peak value of $V_{IN} = 12 \times \sqrt{2} = 17 \text{ V}(1)$ Substituted into voltage divider equation (1) Answer 3.61 V (1)	1	1		3	2

Question	Marking datails	Marks available					
Question	Marking details	AO1	AO2	AO3	Total	Maths	
(iv)	Correct substitution into Q = $2\pi f_0 L/r_L$ (1) Answer Q = 16.6 (1) Calculation of bandwidth = f_0/Q = 6000/16.6 = 361 Hz (1)	1	1		3	2	
(v)	$\frac{V_{out}}{252} = \frac{1}{5.82} \frac{1}{6.0} \frac{1}{6.18} = \frac{1}{1000} \frac$	1	3		4		

Overtien		Marks available					
Question	Marking details	AO1	AO2	AO3	Total	Maths	
(vi)	 The filter has a resonant frequency of 6 kHz which meets the specification (1) The bandwidth of the circuit is only 361 Hz which doesn't meet the specification of 4 kHz (1) The shape is a narrow and high bell curve which doesn't meet the specification of the shape required Or/ The Q factor of 16.6 is too high compared with 1.5 of the specification (1) 			3	3		
	Question 6 total	9	7	3	19	7	

	Question		Marking details	Marks available						
	Questi	on	Marking details	AO1	AO2	AO2 AO3		Maths		
7.	(a)	(i)	Any two from: Infinite input impedance, infinite open loop gain, zero output impedance, infinite slew rate.	2			2			
	(b)	(i)	From graph Gain = +15 (1) Non-inverting amplifier identified (1) Use of Gain = 1 + R _F /R ₁ to calculate resistors in the ratio for R _F : R ₁ of 14:1 (1) Circuit: $R_{F} = \frac{R_{F}}{V_{IN}} + \frac{R_{F}}$			6	6	2		
		(ii)	Range of frequencies over which gain > 0.7 max. gain (1)	1				1		
			Correct use of Bandwidth = GBP/Gain (1)	1			3			
			Answer 100 kHz (1)		1					

	Question		Marking details	Marks available					
				AO1	D1 AO2	AO3	Total	Maths	
		(iii)	Clipping distortion is due to the output voltage exceeding the saturation voltage for V_{OUT} (1) (accept: due to too large an input signal) One of: increasing supply voltage, decreasing gain, decreasing input voltage (1)	1	1		2		
			Question 7 total	5	2	6	13	3	

Quest	ion	Marking details		Marks available					
Quest			AO1	AO2	AO3	Total	Maths		
8. (a)	$V_{OC} = 2.14 V (1)$ $I_{SC} = 2.81 mA$ $R_{EQ} = 762 \Omega (1)$ Equivalent circu	(1)	1	1 1 1		4	3		

Ouest		Marking details		Marks available						
Question		Marking details	A01	AO2	AO3	Total	Maths			
(b)	(b) (i) Substitution into $I_b = I_c/h_{FE} = 68mA/400$ (1) Answer 0.17 mA (1)			1 1		2	2			
	(ii)	V across 762 Ω resistor = 0.17 mA x 0.762 k Ω (1) V = 0.13 V (1) V ₁ = 2.14 - 0.13 = 2.01 V (1)		1 1 1		3	3			
	(iii)	V_{Rb} = 2.01 – 0.7 = 1.31 V (1) Substitution into R _b = V _{Rb} /I _b = 1.31/0.17 x 10 ⁻³ (1) = 7.7 kΩ (1)		3		3	3			
	(iv)	Protect the <u>transistor</u> from back emf from the motor (1) E.g. Rectification (1)	2			2				
		Question 8 total	3	11	0	14	11			

	Ouest		Marking dataila		Ма	rks avail	able	
	Questi	on	Marking details	A01	AO2	AO3	Total	Maths
9.	(a)	(i)	B 001 D 011 G 110 B and G correct (1) D correct (1)	2			2	
		(ii)	Erroneous position signal when crossing a boundary (1) E.g. Moving from 000 to 111 could produce 011 then 111 (1)	1	1		2	
	(b)	(i)	Three compute correct (1)					
			Three segments correct (1) All segments correct (2) Explanation (1) Example (1)	2			4	
	(ii) Resolution = $360/2^3$ (1) Answer 45° (1)			2		2	2	

Overstien	Marking details		Marks available					
Question		AO1	AO2	AO3	Total	Maths		
(iii)	Resolution = 3° = 360/2 ⁿ (1) Rearrange to get correct answer 6.91(1) 7 bits needed (1) Or/ Trial and error method (fully explained) to reach correct answer (3)	1	1 1		3	3		
	Question 9 total	8	5		13	5		

	Ourset		Meyking deteile		Marks available						
	Questi	ION	Marking details	AO1	AO2	AO3	Total	Maths			
10.	(a)	(i)	Time division multiplexing (1) Frequency division multiplexing (1)	1			2				
		(ii)	Signal can be regenerated (1)	1			1				
		(iii)	Correct substitution into f = c/ λ (1) Answers: f _u = 2.50 x 10 ¹⁴ Hz or 250 THz (1) f _l = 2.34 x 10 ¹⁴ Hz (1) Bandwidth = (2.50 - 2.34) x 10 ¹⁴ = 0.16 x 10 ¹⁴ Hz (1) No. Channels = 0.16 x 10 ¹⁴ /110 x 10 ⁹ = 145.5 (1) So 145 channels (1)	1	1 1 1 1 1		6	6			
	(b)	(i)	Correct use of $G_{dB} = 10log_{10}(P_{OUT}/P_{IN})$ (1) Correct answer (-) 11.76 dB (1) Loss per km = (-) 0.78 dBkm ⁻¹ (1)	1	1 1		3	3			
	Ques		Question 10 total	5	7		12	9			

Overtien	Marking dataila		Ма	rks avail		
Question	Marking details	A01	AO2	AO3	Total	Maths
11.	Diagram for summing amplifier:					
	2 inputs with resistors both connected to the inverting input of an op amp. (1)					
	R_F connected between the output of the op amp and then inverting input AND the non-inverting input connected to 0V (1)			3		
	Addition of second op amp to invert output (1)					
	Component values:					
	Correct resistor values such that V_{out} = +5 V					
	E.g. Gain of -20 for V _B and a gain of -10 for V _A with a gain of -1 for the second op amp. So for the first op amp R _F = 20 k Ω , R _A = 2 k Ω and R _B = 1 k Ω (3)		3			3
	[Accept any ratio of $R_F = 20R_B$ and $R_A = 2R_B$]					
	For the second op amp $R_F = R_{in} (1)$ (All resistors $\ge 1k\Omega$)		1		8	1
	Question 11 total		5	3	8	4

COMPONENT 1

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

QUESTION	AO1	AO2	AO3	TOTAL MARK	MATHS
1	1	3	0	4	0
2	2	10	0	12	8
3	4	3	0	7	0
4	9	9	6	24	11
5	6	8	0	14	9
6	9	7	3	19	7
7	5	2	6	13	3
8	3	11	0	14	11
9	8	5	0	13	5
10	5	7	0	12	9
11	0	5	3	8	4
TOTAL	52	70	18	140	67

A490U10-1 EDUQAS GCE A Level Electronics – Component 1 MS A21/DM