Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

A490U10-1

III | III | IIII | III | IIII | III | III

MONDAY, 4 OCTOBER 2021 – AFTERNOON

ELECTRONICS – A level component 1 Principles of Electronics

2 hours 45 minutes

For Exa	For Examiner's use only							
Question	Maximum Mark	Mark Awarded						
1.	4							
2.	12							
3.	7							
4.	24							
5.	14							
6.	19							
7.	13							
8.	14							
9.	13							
10.	12							
11.	8							
Total	140							

ADDITIONAL MATERIALS

In addition to this examination paper, you will require a calculator and a **Data Booklet**.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question 4(d).

© WJEC CBAC Ltd.

(4)	Simplify the following expressions, showing appropriate working. [2							
	(i)	A.(A + B)						
	(ii)	B + (A.B)						
(b)	A logic system is designed to meet the specification in the following truth table.							
			С	В	А	Q		
			0	0	0	1	=	
			0	0	1	1]	
			0	1	0	0		
			0	1	1	0		
			1	0	0	0	_	
			1	0	1	1	-	
			1	1	0	0	-	
			1 1			I		
			1			11		
	(i)	Write down the	e Boolean	equatio	on for the	e outpu	┘ t Q in terms of its ir	nputs A, B and C
	(i)	Write down the	e Boolean	equatio	n for the	e output	┘ t Q in terms of its ir	puts A, B and C [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio	n for the	e output	┘ t Q in terms of its ir	puts A, B and C. [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean algebra to	equatio	on for the	e output	┘ t Q in terms of its ir	nputs A, B and C. [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean algebra to	equatio	n for the	e output	┘ t Q in terms of its ir	nputs A, B and C. [2] [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio simplify	n for the	e output	[⊥] t Q in terms of its ir	nputs A, B and C. [2] [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio	on for the	e output	[⊥] t Q in terms of its ir	nputs A, B and C. [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio	n for the	e output	t Q in terms of its ir	nputs A, B and C. [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio	on for the	e output	t Q in terms of its ir	nputs A, B and C. [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio	on for the	e output	t Q in terms of its ir	nputs A, B and C. [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio	on for the	e output	t Q in terms of its ir	nputs A, B and C. [2]
	(i) (ii)	Write down the Q = Use Boolean a	e Boolean	equatio	n for the	e output	[⊥] t Q in terms of its ir	nputs A, B and C. [2]

Turn over.

Examiner

A490U101 05

Examiner only (b) Redraw the circuit using only 2-input NAND gates and cross out any redundant gates. [4] A •----------- Q B •-----С о------7 A490U101 07

© WJEC CBAC Ltd.

	(ii) Calculate the voltage V_1 correct to 3 decimal places when:	
	${ m S_1}$ has a resistance of 120.5 Ω	
	S_2 has a resistance of 120 Ω	
	VR_{1} has a resistance of 119 Ω	[3]
(b)	The difference amplifier has a gain of – 20.	
(-)	(i) Using your answer to (a)(ii) calculate the value of V_{OUT} .	[2]
	(ii) Calculate suitable values for the resistors M, N and L.	[3]
	M = L :	=

Examiner only

> A490U101 11

(iv) Complete the table below to show the output voltages for the op-amps at W, X and Y and the binary output BA of the ADC. [3]

Value of	Voltage at	Voltage at	Voltage at	Voltage at	Binary output		
V _{IN} /V	W/V	X/V	Y/V	Z/V	В	А	
1.40							
3.80							

(d) The engineer now requires results recorded every 10 seconds at a resolution of 0.1 V and voltage range 0 V to 4.5 V. The microcontroller samples the ADC and stores the data to be analysed later.

Discuss the suitability of the ADC in part *(c)* within the monitoring system for this task. Describe any changes that you might make and justify them. [6 QER]

 	Examiner
	oniy
·	
۱ ــــــــــــــــــــــــــــــــــــ	
· · · · · · · · · · · · · · · · · · ·	
ا ــــــــــــــــــــــــــــــــــــ	
	24
 12 © WJEC CBAC Ltd (A490U10-1)	

BLANK PAGE

13

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

- (b) Another radio station uses frequency modulation with a 190 MHz carrier signal modulated by an audio signal with a baseband of 20 Hz to 12 kHz. The frequency deviation is 10 kHz V^{-1} and the maximum audio voltage is 5 V.
 - (i) The test signal below is used to modulate the carrier signal. Use the axes below to sketch the FM signal output. No values on the axes are necessary. [2]

A490U101 15

Examiner only

Examiner only Determine the Q factor and the bandwidth of the filter. (iv) [3] Sketch the frequency response of the filter using the axes below. (v) Label with numerical values the peak output voltage, resonant frequency and bandwidth. [4] V_{OUT}/V Frequency/kHz Evaluate how well this filter performs in the audio system. [3] (vi) 19

Turn over.

(A490U10-1)

Turn over.

(A490U10-1)

(iii)	Calculate the value of R _B required to just saturate the transistor.	[3]
•••••		
•••••		
(iv)	Explain the purpose of the diode in the circuit diagram on page 23 and give o <i>other</i> application for a silicon diode.	ne [2]
.		
•••••		
]

BLANK PAGE

25

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only A team of engineers are designing a robotic arm for a production line and need a system that 9. can identify the position of the arm. The team plans to use an encoded disc with reflective optoswitches. Each opto-switch is connected to a Schmitt trigger as shown. Schmitt Rest of Opto-switch trigger system One solution uses the binary encoded disc shown below. (a) F G Logic 0 Н Ε Logic 1 D С В The outer ring is the least significant bit (LSB). Write down the binary number for each of the following segments. [2] (i) Β..... D G Such discs can cause false readings. Explain the cause of the false readings and (ii) give **one** example of when a false reading might happen. [2]

© WJEC CBAC Ltd.

) Gra	y code solves the problem of false readings.
(i)	Complete the disc below for Gray code and explain with one example how it overcomes the problem of false readings. [4]
	Logic 0 Logic 1
(ii) 	Calculate the resolution of this 3-bit disc. [2]
 (iii)	An improved system requires a resolution of 3°. How many bits would a disc need to achieve this resolution?
······	

Corr	nmunic	ations signals can be transmitted using a copper cable or a fibre optic cable.	
(a)	(i)	What do the following terms stand for?	[2]
		TDM	
		FDM	
	(ii) 	Explain why noise is less of a concern in a digital communication system.	[1]
	(iii)	Calculate the bandwidth available between the wavelengths 880 nm and 940 m when the speed of light in the fibre is $2.2 \times 10^8 \text{ m s}^{-1}$. Hence calculate the maximum number of channels when the channel bandwidth is 110 GHz .	1m 1m 1m [6]
	······		
	······		
(b)	A co outp Calc	pper cable communication link is 15 km long. The input signal power is 1.2 W and to ut signal power is 80 mW . ulate the power loss in dB km ⁻¹ for the link.	he [3]
••••••			
••••••			
•••••			

value	s and show	how you ca	lculated a	ny compoi	nent values	s used.	l
•••••							
			E	ND OF PA	PER		

Turn over.

8

Examiner only

stion ber	Additional page, if required. Write the question number(s) in the left-hand margin.	Examii only
		7
		1

BLANK PAGE

31

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

