wjec cbac

GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW) FURTHER MATHEMATICS UNIT 2 FURTHER STATISTICS A 2305U20-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Further Mathematics – AS Unit 2 Further Statistics A

Solutions and Mark Scheme

SUMMER 2018 MARK SCHEME

Qu. No.	Solution	Mark	Notes
1(a)	E(X) = 3.6 and $E(Y) = 4$	B1	Both seen or implied in (a) or (b)
	$E(XY)(= 3.6 \times 4)$ = 14.4	B1	
(b)	Var(X) = 2.52 and $Var(Y) = 4E(X^2) = Var(X) + (E(X))^2$	B1	Both si
	$= 2.52 + 3.6^{2}$ = 15.48	M1 A1	Correct method for either $E(X^2)$ or $E(Y^2)$
		A1	
	$Var(XY) = E(X^{2})E(Y^{2}) - (E(XY))^{2}$ = 15.48 × 20 - 14.4 ²	m1	Dep on previous M1 FT their 14.4, 15.48 and 20 for m1 only.
	= 102.24	A1	cao
		[8]	

Qu. No.	Solution	Mark	Notes
2(a)	P(X > 5) = 1 - F(5)	M1	
	$= 0.1319(44)$ or $\frac{19}{144}$ awrt 0.132	A1	
(b)	P(torch will operate for more than 50 hours) = 0.13194444^{3}	M1	'Their (a)' ³
	= 0.00229(70) awrt 0.0023	A1	
(c)	$F(4.5) = 0.7382 \dots$	M1	M1 for attempt to find $F(4.5)$ and $F(4.6)$
	$F(4.6) = 0.7660 \dots$	A1	A1 for both answers.
	Since $F(4.6)$ is greater than 0.75 and $F(4.5)$ is less than 0.75 the solution to $F(q) = 0.75$ is between 4.5 and 4.6	E1	If rearranged to $q^4 - 8q^3 + 324 = 0$ A1 is for 5.0625 and - 6.9424. Accept oe
(d)	f(x) = F'(x) $f(x) = \frac{8 \times 3x^2}{432} - \frac{4x^3}{432}$ (x ²)	M1	M1 Attempt at differentiating with at least one power of <i>x</i> decreasing
	$f(x) = \begin{cases} \frac{x^2}{108}(6-x) & 0 \le x \le 6\\ 0 & \text{otherwise} \end{cases}$ $f(x) = \begin{cases} \frac{x^2}{108}(6-x) & 0 \le x \le 6\\ 0 & \text{otherwise} \end{cases}$	A1	A1 Correct expression for $f(x)$ for x between 0 and
	x =	B1	6. B1 for "0 otherwise" and range $0 \le x \le 6$
(e)	$E(X) = \int_{0}^{6} \frac{x^{3}}{108} (6-x) dx$ $E(X) = \frac{1}{108} \int_{0}^{6} (6x^{3} - x^{4}) dx$	M1	M1 Attempt at integrating $xf(x)$ with at least one power of x increasing FT 'their $f(x)$ ' of equivalent difficulty (ignore limits here)
	$E(X) = \frac{1}{108} \left[\frac{6x^4}{4} - \frac{x^5}{5} \right]_0^6$	A1	A1 correct integration with correct limits FT
	E(X) = 3.6 Mean = 36 hours	A1 B1	cao FT their derived $E(X)$
(f)	Valid explanation	E1	
	e.g. It is possible for a battery to last more than 60 hours. e.g. X could be greater than 6.	[15]	

Qu. No.		Solu	Mark	Notes		
3 (a)	Let the random values for x are $P(X = -50) = \frac{1}{2}$	e -50, 50 and 4	B1	B1 for all three values.		
	OR $P(X = 50) = \frac{1}{2}$		M1	M1 for correct working for $P(X = 50)$ or $P(X = 450)$ or P(X = -50)		
	OR $P(X = 450) = \frac{1}{2}$	$+ \times \frac{1}{52} (= \frac{1}{104} =$		Accept answers in £ or pence for this question.		
	x		A1 for $\frac{7}{8}$ oe			
	P(X=x)	-50 91 104	$\frac{12}{104}$	$\frac{1}{104}$	A1 A1 A1	A1 for $\frac{3}{26}$ oe
	OR				A1 for $\frac{1}{104}$ oe	
	$\begin{array}{c} x \\ P(X=x) \end{array}$	-50 7 8		$ \frac{450}{1} \frac{1}{104} $		Only award final A1 if all correct probabilities are associated with the correct,corresponding
						values of <i>x</i> .
(b)	$E(X) = -50 \times \frac{7}{8}$	$\frac{3}{3} + 50 \times \frac{3}{26} + 45$	$50 \times \frac{1}{104} = \frac{-87}{26}$	5	M1	FT their probability distribution for M1A1.
	= -33.65	(pence)	OR $\frac{-875}{26}$	awrt -33.7	A1	$\frac{-35}{104}$ if working in £
	$E(X^{2}) =$	$= (-50)^2 \times \frac{7}{8} +$	$50^2 \times \frac{3}{26} + 450$	$^2 \times \frac{1}{104}$		
	Var(X) = (-5)	$(50)^2 \times \frac{7}{8} + 50^2 >$	M1			
	$\sigma = \sqrt{3290.4955}$	62				
	= 57.36(284	pence)			A1	
(c)(i)	$(\frac{1}{8} \times 200 =) 25 \text{ p}$	layers	B1			
(ii)	$\left(\frac{875}{26} \times 200 =\right)$	£67.31			B1 [11]	Accept £67.30 FT their –E(X)

The ranks are Cow Actual weight Estimated weight $\sum d^2 = 12$ $r_s = 1 - \frac{6 \times 12}{7 \times 48}$	A 7 7	B 1 1	C 5 4	D 2 2	E 3 6	F 4 3	G 6 5	B1 B1	Correct values for first row. Correct values for second row. Accept reverse ranks.				
Actual weight Estimated weight $\sum d^2 = 12$	7 7	1	5	2	3	4	6	B1	first row. Correct values for second row.				
weightEstimatedweight $\sum d^2 = 12$	7							B1	first row. Correct values for second row.				
weight $\sum d^2 = 12$		1	4	2	6	3	5		Correct values for second row.				
								D1					
$r_s = 1 - \frac{6 \times 12}{7 \times 48}$								B1					
				$r_s = 1 - \frac{6 \times 12}{7 \times 48}$									
= 0.785(714285	7)	OR	1	11	av	vrt 0.78	6	A1					
H_0 : There is no association between the actual weight and estimated weights of the cows.									Do not allow correlation.				
H_1 : There is a positive association between the actual weight and estimated weights of the cows.													
5% 1-tail critical value = 0.6786 Reject H_0 This suggests there is a positive association between the actual and estimated weights.							B1						
							e	E1	Either "Reject H_0 " or "Positive association" FT their r_s				
It only shows they were good at putting the cows in weight order. The contestant may have been a long way out with their guesses.						E1	B1 Anything which implies that this only shows they can order the cows.						
								[9]					
	H_0 : There is no estimated weigh H_1 : There is a p and estimated w 5% 1-tail critical Reject H_0 This suggests the actual and estime It only shows the order. The conte	estimated weights of the H_1 : There is a positive and estimated weights 5% 1-tail critical value Reject H_0 . This suggests there is actual and estimated weights there is actual and estimated weights actual and estimated weights the suggest the state of the suggest states are actual and estimated weights actual and estimated weights actual and estimated weights actual and estimated weights are actual and estimated weights actual a	OR H_0 : There is no association b estimated weights of the cow H_1 : There is a positive association and estimated weights of the 5% 1-tail critical value = 0.67 Reject H_0 This suggests there is a positive actual and estimated weights It only shows they were good order. The contestant may have	OR H_0 : There is no association between estimated weights of the cows. H_1 : There is a positive association be and estimated weights of the cows. 5% 1-tail critical value = 0.6786 Reject H_0 This suggests there is a positive asta actual and estimated weights. It only shows they were good at put order. The contestant may have been	OR $\frac{11}{14}$ H_0 : There is no association between the ad estimated weights of the cows. H_1 : There is a positive association between and estimated weights of the cows.5% 1-tail critical value = 0.6786Reject H_0 This suggests there is a positive association actual and estimated weights.It only shows they were good at putting the order. The contestant may have been a lor	OR $\frac{11}{14}$ H_0 : There is no association between the actual westimated weights of the cows. H_1 : There is a positive association between the arrow and estimated weights of the cows.5% 1-tail critical value = 0.6786Reject H_0 This suggests there is a positive association between the arrow actual and estimated weights.It only shows they were good at putting the cows order. The contestant may have been a long way	OR $\frac{11}{14}$ H_0 : There is no association between the actual weight a estimated weights of the cows. H_1 : There is a positive association between the actual w and estimated weights of the cows. 5% 1-tail critical value = 0.6786Reject H_0 This suggests there is a positive association between th actual and estimated weights.It only shows they were good at putting the cows in weig order. The contestant may have been a long way out with	OR $\frac{11}{14}$ H_0 : There is no association between the actual weight and estimated weights of the cows. H_1 : There is a positive association between the actual weight and estimated weights of the cows.5% 1-tail critical value = 0.6786 Reject H_0 This suggests there is a positive association between the actual and estimated weights.It only shows they were good at putting the cows in weight order. The contestant may have been a long way out with their	OR $\frac{11}{14}$ H_0 : There is no association between the actual weight and estimated weights of the cows.B1 H_1 : There is a positive association between the actual weight and estimated weights of the cows.B1 5% 1-tail critical value = 0.6786B1Reject H_0 This suggests there is a positive association between the actual and estimated weights.E1It only shows they were good at putting the cows in weight order. The contestant may have been a long way out with their guesses.E1				

Qu. No.	Solution	Mark	Notes
5(a)	H_0 : The data can be modelled by the Binomial distribution $B(6,0.6)$	B1	Both
	H_1 : The data cannot be modelled by the Binomial distribution $B(6,0.6)$		
(b)(i)	Expected frequencies are		
	$(d = (P(X = 3) \times 50))$ d = 13.824	B1	
	$(e = (P(X = 4) \times 50))$ e = 15.552	B1	
(ii)	Combine classes with expected frequencies less than 5	M1	SC for solution
	Number of policies sold 0,1 or 2 3 4 5 or 6 Observed 13 12 15 10 Expected 8.96 13.824 15.552 11.664		that does not combine classes or only combines some. (M0M1m1A0B1B1 B1B1)
	Use of χ^2 stat = $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - N$	M1	$=\frac{13^2}{8.96}+\frac{12^2}{13.824}$
	$=\frac{(13-8.96)^2}{8.96} + \frac{(12-13.824)^2}{13.824} + \frac{(15-15.552)^2}{15.552} + \frac{(10-11.664)^2}{11.664}$	m1	$+\frac{15^2}{15.552}+\frac{10^2}{11.664}\\-50$
	= 2.319(254605)	A1	cao
	DF = 3	B1	Example of SC FT their table.
	10% CV = 6.251	B1	May see DF=6 FT their DF
	Since $2.319 < 6.251$ do not reject H_0 .	B1	CV = 10.645 Since 17.394 > 10.645
	Insufficient evidence to reject the binomial model B(6, 0.6)	B1	Reject H_0 There is sufficient evidence to reject the binomial model B(6,0.6) Only award final B1 if previous 3 B1 awarded.
(c)	6 is the number of clients she sees in one day AND 0.6 is the probability of selling a policy to each client.	E1 [12]	Must state one day.

Qu. No.	Solution	Mark	Notes
6(a)	H_0 : There is no association between highest level of education and salary. H_1 : There is an association between highest level of education and salary.	B1	OR H_0 : Highest level of education and salary are independent. H_1 : Highest level of education and salary are not independent.
(b)	$k = \frac{108 \times 71}{664} = 11.54(8) \text{ or } 11.55$	M1 A1	Alternative method 71 - (49.4 + 10.05) OR 108 - (10.57 + 35.46 + 26.19 +24.23)
(c)	$m = \frac{(32 - 24.23)^2}{24.23}$ m = 2.49166 (5 - 9.20) ² Accept 2.491659	M1	M1 either method correct.
	$n = \frac{(5 - 9.20)^2}{9.20}$ n = 1.91739 Accept 1.917391	A1	Both correct. NB Using more dp than in the expected values table gives 2.48798 and 1.91866
(d)(i)	Add the chi squared contributions to get 19.61301	E1	
(ii)	Appropriate comment relating observed and expected values. Eg. Fewer than expected in the highest earning category. More than expected in the lowest earning category. Expected value does not deviate much from observed value for £20000 - £60000 but does for the other two.	E1	
(e)	Appropriate comment on p value. Eg. The p value is < 0.05 which implies there is an association between highest level of education attained and salary. e.g. At the 1% significance level there is no association between	E1	May be given for 19.61 > 15.507 implies there is an association between highest
	highest level of education attained and salary. e.g. Although it can be shown there is an association it does not imply that highest level of education attained leads to a higher paying job.	[8]	level of education attained and salary.

Qu. No.	Solution	Mark	Notes
7(a)	$b = \frac{49.4511}{3.48}$	M1	
	b = 14.2(0977)	A1	
	$a = \frac{898}{14} - 14.2(0977\dots) \times \frac{46.2}{14}$	M1	
	= 17.2(5061)	A1	
	y = 17.3 + 14.2x	B1	B1 FT 'their' gradient and intercept.
(b)	The regression line x on y would be more appropriate. OR would not be able to rearrange this equation to find x from y .	E1	
	Gives a value outside the range. OR 90 is outside the range.	E1	
		[7]	

2305U20-1 WJEC AS (NEW) FURTHER MATHEMATICS UNIT 2 FURTHER STATISTICS A SUMMER 2018 $\rm MS$