wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL (NEW) FURTHER MATHEMATICS UNIT 6 FURTHER MECHANICS B 1305U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE FURTHER MATHEMATICS

A2 UNIT 6 FURTHER MECHANICS B

SUMMER 2019 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	(i) $980 = 80 + 0 \cdot 1v^2$ $v^2 = 9000$	M1	At max. speed, $a = 0$
	$v = 30\sqrt{10} = 94 \cdot 868 \dots (ms^{-1})$	A1	сао
	(ii) Apply N2L, $980 - (80 + 0 \cdot 1v^2) = 360a$	M1 A1	Dim. correct, Fully correct equation (or $980\ 000 - 80\ 000 - 100v^2 = 360\ 000a$)
	$360v\frac{\mathrm{d}v}{\mathrm{d}x} = 900 - 0 \cdot 1v^2$		
	$3600v \frac{dv}{dx} = 9000 - v^2$	A1	Convincing
		[5]	
(b)	$3600 \int \frac{v}{9000 - v^2} \mathrm{d}v = \int \mathrm{d}x$	M1	Separate variables including attempt to integrate
	$-\frac{3600}{2}\ln 9000 - v^2 = x \ (+C)$	A1 A1	$\ln 9000 - v^2 $ Everything correct
	When $x = 0$, $v = 0$	m1	Use of initial conditions
	$-\frac{3600}{2}\ln 9000 = C$	A1	сао
	$\begin{aligned} x &= 1800 \ln 9000 - 1800 \ln 9000 - v^2 \\ \frac{x}{1800} &= \ln \left \frac{9000}{9000 - v^2} \right \end{aligned}$		
	$\frac{9000}{9000 - v^2} = e^{\frac{x}{1800}}$	m1	inversion
	$9000 - v^2 = 9000e^{-\frac{x}{1800}}$		
	$v^2 = 9000 \left(1 - e^{-\frac{x}{1800}} \right)$	A1	oe, cao
		[7]	
(c)	When $v = 85$, $v = 1800 \ln \frac{9000}{1000}$	M1	Used in expression for v^2 or x
	$x = 1800 \ln \left \frac{9000}{9000 - (85)^2} \right $		Accept use of inequalities.
	$x = 2922.1634 \dots$ $x = 2923 m$ or $x = 2 \cdot 923 m$	A1	сао
		[2]	

(d)	 Appropriate explanation, e.g. When v = 30√10 (or v² = 9000) we get division by zero in expression for x v = 30√10 is a limiting value 	E1 [1]	
	Total for Question 1	15	

Q2	Solution			Mark	Notes	
(a)	Shape	Area/mass	Distance from AF	Distance from AC		
		80 × 100 (= 8000)	40	50	B1	
	x x y	$rac{\pi (24)^2}{4} (144\pi)$	$29 - \frac{32}{\pi}$	$60 + \frac{32}{\pi}$	B1	cao for 1 st three B1's
	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\frac{51 \times 60}{2}$ (= 1530)	29 + 34	20	B1	
	•	0.5×1530 (= 765)	29	60	B1	FT their triangle
	Sign	$7235 + 144\pi$	x	\overline{y}	B1	
		nts about AF - 144π)x̄ = (8000)(40)	+ (144π) (29	$9-\frac{32}{\pi}$	M1	Masses and moments consistent
			-(1530)(63)	+ (765)(29)	A1	
		3 · 08 (cm)			A1 M1	cao Masses and moments
	(ii) Moments about AC (7 235 + 144 π) \bar{y} = (8000)(50) + (144 π)(60 + $\frac{32}{\pi}$)			A1	consistent	
	-(1530)(20) + (765)(60) $\bar{y} = 58.15 \dots$ (cm)			A1	сао	
					[11]	
(b)	Received a second secon					
	If hanging in equilibrium, vertical passes through centre of mass.		M1	Correct triangle FT \bar{x} and \bar{y} from (a)		
	$\theta = \tan^{-1} \left(\frac{100 - \bar{y}}{80 - \bar{x}} \right)$		A1	FT \bar{x} and \bar{y} from (a)		
	$\theta = 41 \cdot 729 \dots^{\circ}$		A1	FT \bar{x} and \bar{y} from (a)		
					[3]	
			Total for C	Question 2	14	

Q3	Solution	Mark	Notes
(a)	If <i>e</i> is the extension in equilibrium position $mg = \frac{14e}{l}$	M1	Use of Hooke's Law
	extended length, $e = \frac{mgl}{14}$	A1	
		[2]	
(b)	(i) $T = \frac{14(e+x)}{l}$	M1	
	$=\frac{14e}{l}+\frac{14x}{l}$		
	$= mg + \frac{14x}{l}$	A1	oe, <i>e</i> eliminated
	(ii) Apply N2L	M1	Dim. correct. mg and T
	$mg - T = m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$	A1	opposing
	$mg - \left(mg + \frac{14x}{l}\right) = m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}$		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{14}{ml}x$	A1	Convincing
	(iii) Maximum distance is $e = \frac{mgl}{14}$		FT distance in (a)
	AND	E1	Distance and reason must be
	String would become slack.	[6]	seen.
(c)	(i) $\omega = \sqrt{\frac{14}{0.5 \times 0.7}} = \sqrt{40} = 2\sqrt{10}$	B1	
	$a = 0 \cdot 2$	B1	
	Maximum speed = $a\omega$	M1	Used with their a, ω
	$= 0 \cdot 2 \times 2\sqrt{10} \\ = \frac{2}{5}\sqrt{10} \text{ or } 1 \cdot 26 \dots$	A1	сао
	(ii) Using $x = a \cos \omega t$ with $\omega = \sqrt{40}$ and $0 \cdot 15$		
	$0 \cdot 15 = 0 \cdot 2 \cos \sqrt{40}t$ $\sqrt{40}t = 0 \cdot 7227 \dots$	M1	FT α, ω
	$t = 0 \cdot 11(4)$ (s)	A1	сао
		[6]	
	Total for Question 3	14	

Q4	Solution	Mark	Notes
(a)	Conservation of momentum, $m\mathbf{u}_A + 0 = m \mathbf{v}_A + m \mathbf{v}_B$	M1	Used
	$m(-\mathbf{i}+8\mathbf{j}) + 0 = m(2\mathbf{i}+\mathbf{j}) + m\mathbf{v}_B$	A1	
	$\mathbf{v}_B = (-3\mathbf{i} + 7\mathbf{j}) \qquad (ms^{-1})$	A1	Convincing
		[3]	
(b)	$\begin{array}{c c} \hline Before & After \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & & \\ \hline & & & &$		
	Restitution parallel to j	M1	Used
	$v = -\frac{5}{7}(7) = -5$	A1	
	$\mathbf{v} = -3\mathbf{i} - 5\mathbf{j}$	A1	Velocity parallel to the
		[3]	cushion remains unchanged, i.e. −3i
(c)	Impulse, $\mathbf{I} = \text{change in momentum}$ $\mathbf{I} = m(-3\mathbf{i} - 5\mathbf{j}) - m(-3\mathbf{i} + 7\mathbf{j})$	M1	Used
	$\mathbf{I} = -12m\mathbf{j}$ (Ns)	A1	
	$ \mathbf{I} = 12m$ Ns	A1	Units must be included, cao
		[3]	
(d)	(i) $\mathbf{r} = \mathbf{p} + \mathbf{v}t$ $\mathbf{r} = (x\mathbf{i} + 1.75\mathbf{j}) + (-3\mathbf{i} - 5\mathbf{j})t$		
	Let $\mathbf{r}_{\text{pocket}} = 1 \cdot 75\mathbf{i}$ and compare \mathbf{j} coefficients to get $t = 0 \cdot 35$ (s)	M1 A1	Using $t = 0$ for instant of impact with table cushion and attempt at comparing both
	(ii) Comparing i coefficients x = 2.8 (m)	M1 A1	coefficients must be made
	x = 2.0 (m)	[4]	
	Alternative solution		
	(i) Parallel to <i>y</i> -axis, time $=\frac{\text{distance}}{\text{speed}} = \frac{1.75}{5}$	(M1)	
	$= 0 \cdot 35$ (s)	(A1)	
	(ii) Parallel to the x-axis, dist. = speed × time = $3 \times 0 \cdot 35$ $x = 1 \cdot 05 + 1.75$	(M1)	
	x = 1.05 + 1.75 x = 2.8 (m)	(A1)	
		([4])	

(e)	 Any sensible refinement, e.g. Include friction between table and ball. Consider air resistance, 	B1	
	 Any valid explanation, e.g. Ball will take longer to enter pocket Ball may stop before entering the pocket 	E1 [2]	
	Total for Question 4	15	

Q5	Solution	Mark	Notes
(a)	$y = r^2 - x^2$		
	$(V\bar{x}=)\pi\int_{0}^{r}xy^{2}\mathrm{d}x$	M1	Used with $y^2 = ax^2 + b$
	$(V\bar{x} =) \pi \int_{0}^{r} xy^{2} dx$ $(V\bar{x}) = \pi \int_{0}^{0} x(r^{2} - x^{2}) dx$	A1	All correct, $y^2 = r^2 - x^2$
	$(V\bar{x}) = \pi \left[\frac{r^2 x^2}{2} - \frac{x^4}{4} \right]_0^r$ $(V\bar{x}) = \frac{1}{4}\pi r^4$ Using $V = \frac{1}{2} \times \frac{4}{3}\pi r^3$ and dividing to get	A1	
	$\bar{x} = \frac{3}{2}r$	A1	convincing
	ö	[4]	5
	Alternative solution (applied as above)		
	Equivalently, allow for r_{c}^{r}		
	$(V\bar{y}) = \pi \int_{0}^{r} x^{2} y \mathrm{d}y$ $\bar{y} = \frac{3}{8}r$		
(b)	Shape Mass Distance from plane face		
	$\overbrace{=\pi r^{3}\rho}^{\frac{1}{2}\times\frac{4}{3}\pi r^{3}\times\frac{3}{2}\rho} \qquad \begin{array}{c}2r+\frac{3r}{8}\\(=\pi r^{3}\rho)\end{array} \qquad \left(=\frac{19}{8}r\right)\end{array}$	B1	
	$\pi r^2 \times 2r \times \rho $ $(= 2\pi r^3 \rho) $ r	B1	
	$\pi r^{3}\rho + 2\pi r^{3}\rho \qquad \bar{h}$ $(= 3\pi r^{3}\rho) \qquad \bar{h}$	B1	
	Taking moments $3\pi r^3 \rho \times \bar{h} = \pi r^3 \rho \times \frac{19}{8}r + 2\pi r^3 \rho \times r$	M1 A1	No extra/missing terms FT table provided dim. correct
	$\bar{h} = \frac{35}{24}r$	A1	сао
		[6]	
	Total for Question 5	10	

Q6	Solution	Mark	Notes
(a)	A = S $T = S$		
	Resolve horizontally $S = F$	B1	si
	Moments about <i>B</i>	M1	Dim. correct equation with 3 terms
	$10g \times 2 \cdot 5\cos\theta + 75g \times x\cos\theta = S \times 5\sin\theta$ $S \times 5\sin\theta = 25g\cos\theta(1+3x)$ $S = \frac{25g\cos\theta(1+3x)}{5\sin\theta}$	A2	-1 each error
	$F = 5g\cot\theta(1+3x)$	A1	Convincing
		[5]	
(b)	Use of $F = 5g \cot \theta (1 + 3x)$ with $x = 5$ and $\tan \theta = 4$ $F = 5g \times \frac{1}{4} \times 16$	M1	
	F = 20g = 196 (N)	A1	Accept any form, cao
	Resolve vertically R = 10g + 75g = 85g (= 833)	M1 A1	Dim. correct equation – working may be seen in (a) $F = \mu R$ si
	Use of $F \leq \mu R$	M1	$r = \mu \kappa$ si
	$\mu \ge \frac{F}{R} = \frac{20g}{85g} = 0 \cdot 235 \dots$	A1	сао
		[6]	
(c)	Woman modelled as a particle	E1	
	Ladder is a rigid rod	[1]	
	Total for Question 6	12	

1305U60-1 WJEC GCE A Level (New) Further Mathematics - Unit 6 Further Mechanics B MS S19/DM