

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
FURTHER MATHEMATICS
UNIT 4 FURTHER PURE MATHEMATICS B
1305U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 4 FURTHER PURE MATHEMATICS B

SUMMER 2022 MARK SCHEME

	I = 10		1
1. a)	Differentiating	M1	If identities used,
	$f'(x) = 3\cosh^2 x \sinh x - 3\sinh x \text{oe}$	A1	must be a valid
			attempt at
	At a stationary point, $f'(x) = 0$,		differentiation
	$3 \cosh^2 x \sinh x - 3 \sinh x = 0$	m1	
	$3 \sinh x \left(\cosh^2 x - 1\right) = 0$		
	$\int S \sin x \left(\cos x - 1 \right) = 0$		
	THEN		
	$3 \sinh x = 0$		
	x = 0		
	or		
	$\cosh^2 x - 1 = 0$		
		A1	Award for any
	x = 0 no solutions	Α ι	solution of
			hyperbolic equation
	\therefore The only stationary point is at $x = 0$.	A1	Must be seen to
			discard equations
			with no solutions
			and show all
			remaining equations
			lead to $x = 0$
	OR		
	$As \cosh^2 x - 1 = \sinh^2 x$		
	$3 \sinh x \left(\cosh^2 x - 1\right) = 3 \sinh^3 x = 0$	(A1)	Correct use of
	$\therefore \sinh^3 x = 0$		identity
	$\sinh x = 0$		
	x = 0		
	λ – υ		
	The subject of a subject is set of	(A1)	
	\therefore The only stationary point is at $x = 0$.	(,,,,	

b)	METHOD 1		
	Find gradient or value of f either side of $x = 0$	M1	Accept graphical
	e.g. $f'(-1) = -4.869 \dots < 0$		method
	and $f'(1) = 4.869 \dots > 0$		
	e.g. $\sinh x < 0$ and therefore $\sinh^3 x < 0$ for $x < 0$ and $\sinh x > 0$ and therefore $\sinh^3 x > 0$ for $x > 0$		
	x > 0 and therefore $x > 0$ for $x > 0$		
	Therefore, the stationary point at $x = 0$ is a minimum	A1	cao
	METHOD 2		
	Differentiating and substituting $x = 0$		
	$f''(x) = 3\cosh^3 x + 6\cosh x \sinh^2 x - 3\cosh x \text{ oe}$	(M1)	
	f''(0) = 3 + 0 - 3 = 0		
	Finding the gradient either side of		
	Finding the gradient either side of $x = 0$ AND		
	Stating the stationary point at $x = 0$ is a minimum		
		(A1)	cao
c)	When $x = 0$, $f(x) = -2$		
	Therefore largest range is [2 cc)	B1	Allow
	Therefore, largest range is $[-2, \infty)$	рι	
			'Range $f(x) \ge -2$ '

2.	1 4 4 0 0 50		
2.	Let $z^4 = 9 - 3\sqrt{3}i$		
	$ z^4 = \sqrt{9^2 + (3\sqrt{3})^2} = \sqrt{108} \text{ or } 6\sqrt{3}$	B1	si
	Finding the radius of the circle	M1	FT their $ z^4 $
	e.g. Radius of circle = $\sqrt[8]{108}$ or $108^{\frac{1}{8}}$ = 1.795	A1	
	Circle: $x^2 + y^2 = 3.22$ or 1.795^2	A1	FT their radius Allow 1.8^2 Allow $ z = 108^{1/8}$
2 0)	2t 1_t2		
3. a)	Substituting $\sin \theta = \frac{2t}{1+t^2}$ and $\cos \theta = \frac{1-t^2}{1+t^2}$	M1	
	$4 \times \frac{2t}{1+t^2} + 5 \times \frac{1-t^2}{1+t^2} = 3$		
	$4 \times 2t + 5(1 - t^2) = 3(1 + t^2)$ oe $8t + 5 - 5t^2 = 3 + 3t^2$	A1	Removal of fractions
	$4t^2 - 4t - 1 = 0$	A1	convincing
b)	Solving $4t^2 - 4t - 1 = 0$	M1	M0A0 no working
	$t = \frac{1 \pm \sqrt{2}}{2}$ (-0.207106)	A1	morto no monung
	Attempting to solve for θ $\tan \frac{\theta}{2} = \frac{1-\sqrt{2}}{2}$ or $\tan \frac{\theta}{2} = \frac{1+\sqrt{2}}{2}$	M1	FT their t
	$\frac{\theta}{2} = -11.7 \dots (+180n)$	A1	$\frac{\theta}{2} = -0.2 \dots (+\pi n)$
	$\frac{\text{or}}{\frac{\theta}{2}} = 50.36 \dots (+180n)$	(A1)	$\frac{\theta}{2} = -0.2 \dots (+\pi n)$ $\frac{\theta}{2} = 0.87 \dots (+\pi n)$
	Then, the general solution, $\theta = (-23.4(018) + 360n)^{\circ}$ oe or	A1	$\theta = (-0.408 + 2\pi n)^{c}$
	$\theta = (100.7(214 \dots) + 360n)^{\circ}$ oe	A1	$\theta = (1.758 + 2\pi n)^{c}$
			M0 M0 for -23.4 and 100.7 without working
4.	$Volume = \pi \int_{1}^{3} \sin^{2} y dy$	B1	Correct notation required
	$\pi \int_{1}^{3} \frac{1 - \cos 2y}{2} \mathrm{d}y$	M1	Integrable form with no more than 1 slip
	$\pi \left[\frac{1}{2}y - \frac{1}{4}\sin 2y \right]_1^3$	A1	oe cao
	$\pi \left[\left(\frac{3}{2} - \frac{1}{4}\sin 6 \right) - \left(\frac{1}{2} - \frac{1}{4}\sin 2 \right) \right]$	m1	Attempt to substitute in correct limits
	Volume = 4.08	A1	cao

5. a)	$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 2 & 7 & 0 & 3 \end{pmatrix}$		
	$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 2 & -5 & 3 & 8 \\ 0 & 6 & -2 & 0 \end{pmatrix}$	M1	Attempt at row reduction
	$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & -9 & 3 & 2 \\ 0 & 6 & -2 & 0 \end{pmatrix}$	A1	1 row a multiple of another row
	$\begin{pmatrix} 1 & 2 & 0 \\ 0 & -9 & 3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 4 \\ 3 \end{pmatrix}$	A1	oe
	Valid statement. Eg. As $0x + 0y + 0z \neq \frac{4}{3}$ there are no solutions.	E1	If M0, SC1 det A = 0 SC1 No unique
			solutions
b)	A correct statement involving 3 planes with no incorrect statements e.g. 3 planes do not meet at a single point	B1	FT their (a)
6.	$\cos 2\theta - \cos 4\theta = -2\sin \frac{2\theta + 4\theta}{2}\sin \frac{2\theta - 4\theta}{2}$	M1	M0 no working
	$-2\sin 3\theta\sin(-\theta) = \sin 3\theta$	A1	
	$2\sin 3\theta \sin \theta - \sin 3\theta = 0$		
	$\sin 3\theta \left(2\sin \theta - 1\right) = 0$	A1	
	$\sin 3\theta = 0 \qquad \qquad \sin \theta = \frac{1}{2}$	A1	FT one slip for A1A1A1 Both solutions
	$3\theta = 0, \pi, 2\pi, 3\pi$		DOUT SOLUTIONS
	$\theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi \qquad \theta = \frac{\pi}{6}, \frac{5\pi}{6}$	A1A1	A1 each set of solutions If A1A1, penalise -1 for use of degrees
7. a)	$4x^2 + 10x - 24 = 4\left[x^2 + \frac{5}{2}x - 6\right]$	M1	$4x^{2} + 10x - 24$ $= 4\left[x^{2} + \frac{5}{2}x\right] - 24$
	$= 4\left[\left(x + \frac{5}{4} \right)^2 - \frac{121}{16} \right]$	m1	oe
	$=4\left(x+\frac{5}{4}\right)^2-\frac{121}{4}$	A1	
	Therefore, $a = 4$ $b = \frac{5}{4}$ $c = -\frac{121}{4}$		

b)	METHOD 1:		
,	$\int_{3}^{5} \frac{6}{\sqrt{4x^2 + 10x - 24}} dx$		
	$\int_{3} \sqrt{4x^2 + 10x - 24} dx$		
	$=\int_{0}^{5}\frac{6}{x}$	M1	M0 no working
	$= \int_{3}^{5} \frac{6}{\sqrt{4\left(x + \frac{5}{4}\right)^{2} - \frac{121}{4}}} dx$		FT (a) for equivalent difficulty
	$= \int_{3}^{5} \frac{6}{2\sqrt{\left(x + \frac{5}{4}\right)^{2} - \frac{121}{16}}} dx$	m1	Extracting a factor of
	$2\sqrt{(x+\frac{3}{4})} - \frac{121}{16}$		$\sqrt{4}$ from denominator
	$= \left[3\cosh^{-1}\left(\frac{x+\frac{5}{4}}{\sqrt{\frac{121}{16}}}\right) \right]^5$	A1	oe
	L \\\ 16 \ 1 ₃		
	$= \left[3\cosh^{-1}\left(\frac{4x+5}{11}\right)\right]_3^5$		
	$= \left[3\cosh^{-1}\left(\frac{25}{11}\right) - 3\cosh^{-1}\left(\frac{17}{11}\right) \right]$	m1	
	= 1.379	A1	cao Must be 3d.p.
	METHOD 2:		
	$\int_{3}^{5} \frac{6}{\sqrt{4x^2 + 10x - 24}} \mathrm{d}x$		
	$=\int_{-\infty}^{5} \frac{6}{dx}$	(M1)	M0 no working
	$= \int_{3}^{5} \frac{6}{\sqrt{4\left(x + \frac{5}{4}\right)^{2} - \frac{121}{4}}} dx$	(IVI I)	FT (a) for equivalent difficulty
	$= \int_{3}^{5} \frac{6}{2\sqrt{\left(x + \frac{5}{4}\right)^{2} - \frac{121}{16}}} dx$	(m1)	Extracting a factor of
	$2\sqrt{(x+4)} - \frac{16}{16}$		$\sqrt{4}$ from denominator
	$= \left[3\ln\left\{ x + \frac{5}{4} + \sqrt{\left(x + \frac{5}{4}\right)^2 - \frac{121}{16}} \right\} \right]_3^5$	(A1)	
	$= 3\ln\left[\frac{25}{4} + \sqrt{\frac{504}{16}}\right] - 3\ln\left[\frac{17}{4} + \sqrt{\frac{168}{16}}\right]$	(m1)	
	$= 3\ln\left[\frac{25+\sqrt{504}}{17+\sqrt{168}}\right] = 3\ln\left[\frac{25+6\sqrt{14}}{17+2\sqrt{42}}\right]$		
	= 1.379	(A1)	cao Must be 3d.p.

			T
8.	$x = \sinh y$ $x = \frac{e^{y} - e^{-y}}{2}$	B1	
	$2xe^{y} = (e^{y})^{2} - 1$ $\therefore (e^{y})^{2} - 2xe^{y} - 1 = 0$		
		B1	
	Using quadratic formula, $e^{y} = \frac{2x \pm \sqrt{4x^{2} + 4}}{2} \qquad \left(= x \pm \sqrt{x^{2} + 1}\right)$	M1	
	$y = \ln\left(x \pm \sqrt{x^2 + 1}\right)$	A1	Allow omission of ±
		A1	
	As $x - \sqrt{x^2 + 1} < 0$, $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$	B1	Justification may be
	,		seen earlier
9.	$\left(\cos\frac{\theta}{3} + i\sin\frac{\theta}{3}\right)^3$		
a) i)	$\left(\cos\frac{3}{3} + 1\sin\frac{3}{3}\right)$ $\cos^{3}\frac{\theta}{3} + 3\cos^{2}\frac{\theta}{3}\left(i\sin\frac{\theta}{3}\right) + 3\cos\frac{\theta}{3}\left(i\sin\frac{\theta}{3}\right)^{2} + \left(i\sin\frac{\theta}{3}\right)^{3}$	M1	Unsimplified
	$= \cos^{3} \frac{\theta}{3} + 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} + 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} - 4 \sin^{3} \frac{\theta}{3}$ $= \cos^{3} \frac{\theta}{3} + 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} - 3 \cos^{2} \frac{\theta}{3} \sin^{2} \frac{\theta}{3} - 4 \sin^{3} \frac{\theta}{3}$	A1	Allow cis notation
	3 3 3 3 3	711	
ii)	$\left(\cos\frac{\theta}{3} + i\sin\frac{\theta}{3}\right)^3 = \cos\theta + i\sin\theta$	B1	si
	$\therefore \cos \theta = \cos^3 \frac{\theta}{3} - 3 \cos \frac{\theta}{3} \sin^2 \frac{\theta}{3}$	M1	FT (i) for sign error only
	$=\cos^3\frac{\theta}{3} - 3\cos\frac{\theta}{3}\left(1 - \cos^2\frac{\theta}{3}\right)$	A1	
	$=4\cos^3\frac{\theta}{3}-3\cos\frac{\theta}{3}$	A1	cao convincing
b)	METHOD 1: $4 \times 3^{\theta} = 2 \times 8^{\theta}$	M1	Substitution
	$\frac{\cos\theta}{\cos\frac{\theta}{3}} = \frac{4\cos^3\frac{\theta}{3} - 3\cos\frac{\theta}{3}}{\cos\frac{\theta}{3}} = 1$		
		A1	Removing fraction
	$4\cos^3\frac{\theta}{3} - 4\cos\frac{\theta}{3} = 0$		
	$4\cos\frac{\theta}{3}\left(\cos^2\frac{\theta}{3}-1\right)=0$		
	$\cos\frac{\theta}{3} = 0$ (not a possible solution in this equation)		
	or $\cos \frac{\theta}{3} = \pm 1$	A1	All three (including ±1)
	When $\cos \frac{\theta}{3} = 1$, $\frac{\theta}{3} = 2n\pi$ $\therefore \theta = 6n\pi$	M1	Use of general solution of $\cos \theta$
	When $\cos \frac{\theta}{3} = -1$, $\frac{\theta}{3} = \pi + 2n\pi$		
	$ \theta = 3\pi + 6n\pi $ General solution: $\theta = 3n\pi$	A1 A1	Either θ

$\frac{\text{METHOD 2:}}{\frac{\cos \theta}{3}} = 1$		
$\cos\theta - \cos\frac{\theta}{3} = 0$	(B1)	
Then, $-2\sin\frac{\theta + \frac{\theta}{3}}{2}\sin\frac{\theta - \frac{\theta}{3}}{2} = 0$	(M1) (A1)	
Therefore, $\sin \frac{2\theta}{3} = 0$ or $\sin \frac{\theta}{3} = 0$	(A1)	Both
$\frac{2\theta}{3} = n\pi$ or $\frac{\theta}{3} = n\pi$	(M1)	
$\theta = \frac{3}{2}n\pi$ or $\theta = 3n\pi$		
Odd multiple of $\frac{3}{2}n\pi$ are not a solution because $\cos\theta=0$		
$\theta = 3n\pi$	(A1)	

10.	$\det A = 4(\lambda \times \lambda) - (8 \times 8)$	M1	oe
a)	$\det A = 4\lambda^2 - 64$	A1	
	Singular when det A = 0		
	METHOD 1:		
	$4\lambda^2 - 64 = 0$ $\lambda^2 = 16$	M1	
	$\lambda = \pm 4$	A1	
	so there are two values where A is singular		
	METHOD 2: $4\lambda^2 - 64 = 0$	(M1)	
	$4\lambda^{2} - 64 = 0$ Discriminant = $0^{2} - (4 \times 4 \times -64) = 1024$		
	As 1024 > 0 there are two roots of the equation so there are two values where A is singular	(A1)	Must reference >0
	_		
b) i)	Cofactor matrix: $\begin{pmatrix} 9 & -8 & -12 \\ -24 & 12 & 32 \\ -16 & 8 & 12 \end{pmatrix}$		
	\-16 8 12 /		
	Adjugate matrix = $\begin{pmatrix} 9 & -24 & -16 \\ -8 & 12 & 8 \\ -12 & 32 & 12 \end{pmatrix}$	D 0	A.II.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B3	All correct
			B2 for 7 or 8 correct B1 for 5 or 6 correct
ii)	$\det A = (4 \times 3^2) - 64 = -28$	B1	FT their (a)
	$\therefore A^{-1} = \frac{1}{-28} \begin{pmatrix} 9 & -24 & -16 \\ -8 & 12 & 8 \\ -12 & 32 & 12 \end{pmatrix}$	B1	FT their adjugate
	-20\-12 32 12 <i>/</i>		Mark final answer

	2v1	1	T I
11. a) i)	$y = e^{3x} \sin^{-1} x$ Use of product rule while differentiating	M1	
	$\frac{dy}{dx} = e^{3x} \cdot \frac{1}{\sqrt{1 - x^2}} + 3e^{3x} \sin^{-1} x$	A2	A1 each term ISW
ii)	METHOD 1: $y = \ln(\cosh(2x^2 + 7x))^2 = 2\ln(\cosh(2x^2 + 7x))$	M1	Log rule AND chain rule
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 \times \sinh(2x^2 + 7x) \times (4x + 7)}{\cosh(2x^2 + 7x)}$	A1 A1 A1	$ sinh(2x^2 + 7x) $ $ 4x + 7 $ oe Fully correct ISW
	METHOD 2: $y = \ln(\cosh(2x^2 + 7x))^2$		
	$\frac{dy}{dx} = \frac{2\cosh(2x^2 + 7x) \times \sinh(2x^2 + 7x) \times (4x + 7)}{(\cosh(2x^2 + 7x))^2}$	(M1) (A1) (A1)	Chain rule $sinh(2x^2 + 7x)$ $4x + 7$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 \times \sinh(2x^2 + 7x) \times (4x + 7)}{\cosh(2x^2 + 7x)}$	(A1)	oe Fully correct ISW
b)	METHOD 1: $1 = \frac{1}{\sqrt{1 + (y^2)^2}} \times \left(2y\frac{dy}{dx}\right)$	M1 A1	Must see chain rule Differentiate sinh ⁻¹ $2y \frac{dy}{dx}$
	$\sqrt{1+y^4} = 2y \frac{\mathrm{d}y}{\mathrm{d}x}$	A1	$\frac{2y}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{1+y^4}}{2y}$	A1	
	METHOD 2: $y^2 = \sinh x$ dy		
	$2y\frac{dy}{dx} = \cosh x$ $\frac{dy}{dx} = \frac{\cosh x}{2y}$	(M1) (A1) (A1) (A1)	$2y\frac{\mathrm{d}y}{\mathrm{d}x}$ Cosh
	METHOD 3: $y = \pm \sqrt{\sinh x}$ $dx = 1$, ,	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \frac{1}{2} \sinh^{-\frac{1}{2}} x \cosh x$	(M1) (A1) (A1) (A1)	$ \frac{1}{2}\sinh^{-\frac{1}{2}}x $ Cosh $ \pm $
	THEN: When $x = 1$, $y = \pm 1.084$,	B1	Both
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm 0.7117$	A1	cao Both
	y - 1.084 = 0.7117(x - 1)	B1	FT their y and dy/dx
	y + 1.084 = -0.7117(x - 1)	B1	FT their y and dy/dx

12.	Solve auxiliary $3t^2 + 5t - 2 = 0$ (3t - 1)(t + 2) = 0	M1	M0A0 no working
	$t = \frac{1}{3}$ or $t = -2$	A1	Both values
	Complementary function: $y = Ae^{\frac{1}{3}x} + Be^{-2x}$		
	Use particular integral of the form $Cx^2 + Dx + E$ $\frac{dy}{dx} = 2Cx + D$	M1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2C$	A1	Both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$
	Therefore, $6C + 5(2Cx + D) - 2(Cx^2 + Dx + E) = 8 + 6x - 2x^2$	A1	Substitution
	$-2C = -2 \rightarrow C = 1$ $10C - 2D = 6 \rightarrow D = 2$ $6C + 5D - 2E = 8 \rightarrow E = 4$	A1	All values
	General Solution: $y = Ae^{\frac{1}{3}x} + Be^{-2x} + x^2 + 2x + 4$	M1	FT C,D,E for M1A1M1A1 Sub and differentiate
	$\frac{dy}{dx} = \frac{1}{3}Ae^{\frac{1}{3}x} - 2Be^{-2x} + 2x + 2$	A1	
	When $x = 0$, $y = A + B + 4 = 6$	M1	Substitution
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}A - 2B + 2 = 5$	A1	Both y and $\frac{dy}{dx}$
	Solving, $A = 3$ and $B = -1$	B1	сао
	Therefore, $y = 3e^{\frac{1}{3}x} - e^{-2x} + x^2 + 2x + 4$	B1	cao
	y - 30° C 1 1 1 2 1 T	וט	

13. a)		G1 G1	For shape , to include reflection in the initial line. Fully correct
b) i)	$y = r \sin \theta$ $y = (2 - \cos \theta) \sin \theta$ $y = 2 \sin \theta - \sin \theta \cos \theta$ THEN $\left(y = 2 \sin \theta - \frac{1}{2} \sin 2\theta\right)$	M1	
	$\frac{dy}{d\theta} = 2\cos\theta - \cos 2\theta$ When parallel to initial line, $2\cos\theta - \cos 2\theta = 0$ $2\cos\theta - (2\cos^2\theta - 1) = 0$ $2\cos^2\theta - 2\cos\theta - 1 = 0$	M1 A1	convincing
	OR $\frac{dy}{d\theta} = 2\cos\theta - (\cos^2\theta - \sin^2\theta)$ When parallel to initial line, $2\cos\theta - (\cos^2\theta - \sin^2\theta) = 0$ $2\cos\theta - \cos^2\theta + (1-\cos^2\theta) = 0$	(A1)	
ii)	$2\cos^2\theta - 2\cos\theta - 1 = 0$ Solving $\cos\theta = \frac{2 \pm \sqrt{4 + 8}}{4}$ $\cos\theta = 1.366 \text{ therefore no solutions}$	(A1) M1	convincing
	or $\cos\theta = 1.366$ therefore no solutions or $\cos\theta = -0.366$ $\therefore \theta = 1.9455 \text{ or } 4.3377$ $r = 2.366$	A1 A1 B1	Both values FT their θ

14.	$\frac{6x^2 + 2x + 16}{x^3 - x^2 + 3x - 3} = \frac{6x^2 + 2x + 16}{(x - 1)(x^2 + 3)}$	M1 A1	Linear × Quadratic
	$\frac{6x^2 + 2x + 16}{(x-1)(x^2+3)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+3}$	M1	FT their factorising if linear × quadratic of
	$6x^2 + 2x + 16 = A(x^2 + 3) + (Bx + C)(x - 1)$	A1	equivalent difficulty
	When $x = 1$, $24 = 4A$ $\rightarrow A = 6$		
	When $x = 0$, $16 = 3A - C$ $\rightarrow C = 2$		
	Compare coefficients of x^2 : $6 = A + B$ $\therefore B = 0$	A2	A2 all 3 values A1 any 2 values
	$\int_{2}^{4} \frac{6x^{2} + 2x + 16}{x^{3} - x^{2} + 3x - 3} dx$		If M0, SC1 for $A = 6$, $B = 0$, $C = 2$.
	$= \int_{2}^{4} \left(\frac{6}{x - 1} + \frac{2}{x^2 + 3} \right) dx$	M1	FT their A , B , C provided $a \neq 0$ and $c \neq 0$
	$= \left[6\ln(x-1) + \frac{2}{\sqrt{3}} \tan^{-1} \frac{x}{\sqrt{3}} \right]_{2}^{4}$	A2	A1 each term
	= 7.93362 - 0.98966 = 6.944	A1	cao Answer only 0 marks