wjec cbac

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW) FURTHER MATHEMATICS UNIT 2 FURTHER STATISTICS A 2305U20-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 2 FURTHER STATISTICS A

SUMMER 2022 MARK SCHEME

Qu. No.	Solution	Mark	Notes
1 (a)	p = 0.0099	B1	
(b)	$E(X) = (0 \times 0.9 +)2 \times 0.09 + 100 \times 0.0099 + 1000 \times 0.0001$	M1	FT "their p " Allow one slip
	E(X) = 1.27 Var(X) = $(0^2 \times 0.9 +)2^2 \times 0.09 + 100^2 \times 0.0099$ + $1000^2 \times 0.0001 - 1.27^2$	A1 M1	FT "their p " and "their $E(X)$ " Allow one slip
	Var(X) = 197.7(471)	A1	Accept 198 from correct working
(c)(i)	£1.28	B1	FT their E(X)
(ii)	Valid explanation. e.g. People may be willing to pay for the excitement of the lottery. The lottery may be raising money for charity. People don't often make decisions based on mathematics. People could win a lot of money.	E1 Total [7]	

2 (a)	$S_{xy} = 113.16 - \frac{62.8 \times 19.4}{10}$ $S_{xy} = -8.672$ $S_{xx} = 413.44 - \frac{62.8^2}{10}$	B1	B1 for each of S_{xy}, S_{xx} and S_{yy} .
	$S_{xx} = 19.056$ $S_{yy} = 46.16 - \frac{19.4^2}{10}$	B1	
	$S_{yy} = 8.524$ $r = \frac{-8.672}{\sqrt{19.056 \times 8.524}}$	B1	
	r = -0.68(0427)	B1	B1 for <i>r</i> .
(b)	$\begin{array}{l} H_0: \rho = 0 \qquad \qquad H_1: \rho \neq 0 \\ 5\% \text{ two tail critical value} = -0.6319 \\ \text{Since } -0.6804 < -0.6319 \text{ reject } H_0. \\ \text{It suggests that the rate of unemployment and the rate of wage inflation are not independent.} \end{array}$	B1 B1 E1	FT their r Accept in context Or CV = 0.6319 Or 0.6804 > 0.6319 Only award E1 if previous three B1 awarded E0 for categorical statements
(c)	Valid comment. e.g. This should cast doubt on Amy's opinion based on her answer in (b) Valid suggestion. e.g. She could look at more countries. She could come to different conclusions for different countries. She could consider more regions within each country	E1	FT their conclusion from (b)
(d)	The underlying distribution is bivariate normal. The data come from a bivariate normal distribution.	E1	
		Total [11]	

			· · · · · · · · · · · · · · · · · · ·
3 (a)	Total number of baskets, T, is		
	$Po((2.1 + 1.9) \times 4)$ or $Po(16)$ or $Po(2.1 \times 4 + 1.9 \times 4)$	M2	M1 for Poisson and adding. M1 for multiplying by 4.
	$P(T = 20) = \frac{16^{20} \times e^{-16}}{20!}$ $= 0.0559$	m1 A1	Dependent on M2 Use of formula or calculator cao
(h)		B1	
(b) (i)	Exponential distribution Mean time between baskets= standard deviation =		
	$\frac{1}{2.1} \times 12$	M1	Must be clear that
	5.7 minutes.	A1	5.7 is mean AND standard deviation
(b) (ii)	P (Klay doesn't score for the rest of the quarter) = $e^{(-1.9 \times 0.75)}$	M1	
	= 0.2405	A1	
	Alternative solution		
	$\lambda = 1.425$ P(X = 0) = 0.2405	(M1) (A1)	M1 for Po(1.9×0.75) SC1 for $(e^{(-2.1 \times 0.75)} =)0.207$
(c)	Let <i>F</i> be the number of free throws he misses. <i>F</i> ~ $B(530, 0.04)$		
	$P(F > 25) = 1 - P(F \le 25)$ = 0.169(1214)	M1 A1	
		Total [11]	

4 (a)	The pdf must be positive (or zero) $f(r)$	≥ 0	B1	B1 for implying that the pdf must be positive or zero (or cannot be negative)
	Therefore $(b - 4) \ge 0$ $b \ge 4$		B1	B1 for Correct statement leading to correct conclusion. ALTERNATIVE B1 for "If $b < 4$, f(r) is negative." B1 for stating that is not possible.
4 (b) (i)	$\int_{1}^{4} kr(4-r)dr = 1$ $\int_{1}^{4} (4kr - kr^{2})dr = 1$ $k \left[\frac{4r^{2}}{2} - \frac{r^{3}}{3}\right]_{1}^{4} = 1$		M1	M1 Attempt at integration at least one power of r increasing by 1. Limits and = 1 not required here.
	$k \left[\frac{4r^2}{2} - \frac{r^3}{3} \right]_1^4 = 1$		A1	A1 Correct integration.
	$k\left[\left(\frac{64}{2} - \frac{64}{3}\right) - \left(\frac{4}{2} - \frac{1}{3}\right)\right] = 1$		m1	m1 substitution of correct limits and =1.
	$k = \frac{1}{9}$	*ag	A1	Convincing

4 (b) (ii)			
	$F(r) = \frac{1}{9} \int_{1}^{r} t(4-t)dt$	M1	M1 Attempt at integrating $f(t)$ at least one power of t increasing by 1. Limits not required here.
	$= \frac{1}{9} \left[\frac{4t^2}{2} - \frac{t^3}{3} \right]_1^r$ = $\frac{1}{9} \left[2r^2 - \frac{r^3}{3} - \left(2 - \frac{1}{3}\right) \right]$	A1	A1 Correct integration.
	$= \frac{1}{9} \left[2r^2 - \frac{r^3}{3} - \left(2 - \frac{1}{3}\right) \right]$ $= \frac{1}{9} \left(2r^2 - \frac{r^3}{3} - \frac{5}{3} \right)$	m1	m1 substituting correct limits Condone upper limit = x for m1 only
	$=\frac{1}{27}(6r^2 - r^3 - 5)$	A1	oe Mark final expression for $1 \le r \le 4$
(iii)	$P(2 \le R \le 3) = F(3) - F(2)$ 22 11	M1	oe
	$= \frac{1}{27} - \frac{1}{27}$ $= \frac{11}{27}$	A1	FT their $F(r)$ for equivalent difficulty and provided probability is valid.
		Total [12]	

			TT 1 (1		•		
5	Let the random variable <i>X</i> be the number of 6s thrown from 3 dice.						
	If the dice are unbiased then $X \sim B(3, \frac{1}{6})$					B1	si (implied by at least 3 correct expected frequencies)
	-	H_0 : The data can be modelled by the Binomial					frequencies)
	distribution H_1 : The data	0	modelled	by the Bin	omial	B1	or equivalent
	distribution I		; modelled	by the bin	Unia		
		6					
	Number	0	1	2	3		
	of sixes	625	384	01	10	M1	At least one correct.
	Observed Expected	625 636.574	384 381.944	81 76.389	10 5.093	A1	All correct.
	Use of χ^2 sta	at = $\sum \frac{O}{O}$	$\frac{(-E)^2}{E}$ or	$\Sigma \frac{O^2}{E}$	-N	M1	Must see at least 2 terms added
	$=\frac{(625-636.57)}{636.574}$	$(\frac{74)^2}{10} + \frac{(384 - 3)^2}{(10 - 5)^2} + \frac{(10 - 5)^2}{5.09}$	$\frac{381.944)^2}{1.944} + \frac{(8)}{(93)^2}}{93}$	$\frac{1-76.389)^2}{76.389}$		m1	$\frac{\frac{625^2}{636,574} + \frac{384^2}{381.944} + \frac{81^2}{76.389} + \frac{10^2}{5.093} - 1100}$
	= 5.23 DF = 3 5% CV = 7.815						Accept anything which rounds to 5.2
							Accept other test levels. 1% CV = 11.345 10% CV = 6.251
						B1 E1	FT their χ^2 Only award E1 if all five previous B1 awarded E0 for categorical statements
						Total [11]	

6 (a)	H_0 : Social media usage is independent of age. H_1 : Social media usage is not independent of age	B1	
(b)	<u>1266×352</u> 1953	B1	oe
	=228.18 *ag		
(C)	$s = \frac{(412 - 342.27)^2}{342.27}$	M1	
	342.27 s = 14.2(0595699)	A1	
(d)	$(4-1) \times (2-1) = 3$ degrees of freedom.	B1	
	5% CV = 7.815	B1	
	Add χ^2 contributions	M1	M1A1 if statement
	29.34 + 14.21 + 0.06 + 62.94 + 54.07 + 26.18 + 0.11 + 115.99		along the lines of "one contribution is
	= 302.90	A1	> 7.815"
	Since $302.91 > 7.815$ we can reject H_0 .	B1	FT provided $\chi^2 >$ 7.815
	There is (strong) evidence to suggest that social media usage is not independent of age.	E1	Only award E1 if previous three B1 awarded and part (a) correct
(e)	Valid explanation. e.g. The p value would not lead to rejecting H_0 , which is the incorrect conclusion.	E1	
		Total [11]	

7 (a)	$b = \frac{96.60984}{88.42142}$	M1	
	b = 1.09(26)	A1	Accept 1.1
	$a = \frac{2738.656}{30} - 1.09(26\dots) \times \frac{2850.836}{30}$	M1	FT their 'b' for M1
	<i>a</i> = -12.5(39)	A1	FT their 'b', following A0. Answer correct to 3sf
	y = -12.5 + 1.09x	A1	A1 FT 'their' gradient and intercept provided at least one M1 awarded.
(b)	Africa because 70 is out of the data set for Asia, The data points for Africa are closer to a straight line than those for the Arab World.	E1 E1	
		Total [7]	

2305U20-1 WJEC GCE AS Further Mathematics - Unit 2 Further Statistics A MS S22/CB