| Surname     | Centre<br>Number | Candidate<br>Number |
|-------------|------------------|---------------------|
| Other Names |                  | 2                   |



## GCE AS/A level

1213/01

# **GEOLOGY - GL3 Geology and the Human Environment**

A.M. FRIDAY, 16 May 2014

1 hour 15 minutes

|           | For Examiner's use only |                 |                 |
|-----------|-------------------------|-----------------|-----------------|
|           | Question                | Maximum<br>Mark | Mark<br>Awarded |
| Section A | 1.                      | 12              |                 |
|           | 2.                      | 13              |                 |
| Section B | 3.                      |                 |                 |
|           | 4.                      | 25              |                 |
|           | 5.                      |                 |                 |
|           | Total                   | 50              |                 |

#### **ADDITIONAL MATERIALS**

In addition to this examination paper, you will need a calculator.

#### **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions from Section A and one from Section B.

Write your answers in the spaces provided in this booklet.

#### INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Candidates are reminded that marking will take into account the use of examples and the quality of communication used in answers, especially in the structured essay.

#### **SECTION A**

Answer both questions 1 and 2 on the lines provided in the questions.

**1. Figure 1a** is a map showing the epicentres of Mexican earthquakes leading up to the 8.1 magnitude earthquake of 19 September 1985. **Figures 1b** and **1c** show data on damage related to the 1985 Mexican earthquake.



Figure 1a





Figure 1c

(1213-01)

| (a) | Refe  | r to <b>Figure 1a</b> .                                                                                          |
|-----|-------|------------------------------------------------------------------------------------------------------------------|
|     | (i)   | Explain why earthquakes are frequent in the region shown on <b>Figure 1a</b> . [2]                               |
|     | (ii)  | Explain why the 1985 earthquake might have been predicted to occur in the area where it did. [2]                 |
| (b) | Refe  | r to <b>Figure 1b</b> .                                                                                          |
|     | (i)   | Describe the relationship between the thickness of the Tacubaya clay and damage to buildings in Mexico City. [2] |
|     | (ii)  | Explain why the damage caused by the earthquake varied with the thickness of the clay. [2]                       |
|     |       |                                                                                                                  |
| (c) | Refe  | r to <b>Figure 1c</b> .                                                                                          |
|     | (i)   | State between which two building heights (number of storeys) more than 25% of buildings were damaged. [2]        |
|     |       | Range from to storeys                                                                                            |
|     | (ii)  | Explain why buildings outside this range were less likely to be damaged by this earthquake. [2]                  |
|     | ••••• |                                                                                                                  |
|     |       |                                                                                                                  |

2. Figure 2a is a section through an aquifer and confining beds.



Figure 2a

(a) Refer to Figure 2a.

| (1)     | Explain why springs occur at locations <b>A</b> and <b>B</b> .                              | [၁]      |
|---------|---------------------------------------------------------------------------------------------|----------|
| Α       |                                                                                             |          |
| В       |                                                                                             |          |
| (ii)    | Explain how overpumping from the non-flowing borehole might interfere whydrological system. | vith the |
|         |                                                                                             |          |
| ******* |                                                                                             |          |
|         |                                                                                             |          |

Porosity depends upon a number of sedimentary characteristics. **Figure 2b** shows three sediment models (**A**, **B** and **C**) representing the packing of spherical grains of different sizes.



Figure 2b

- (b) (i) With reference to **Figure 2b**, complete **Table 2** by describing the effect on porosity of differences in *packing* and *grain size* in the following pairs:
  - packing in models A and B
  - grain size in models B and C

[2]

| Sedimentary characteristic | Models<br>compared                      | Effect on porosity |
|----------------------------|-----------------------------------------|--------------------|
| packing                    | model <b>A</b><br>and<br>model <b>B</b> | •                  |
| grain size                 | model <b>B</b><br>and<br>model <b>C</b> | •                  |

Table 2

| (ii) | State <b>one</b> additional sedimentary characteristic that would influence porosity | in |
|------|--------------------------------------------------------------------------------------|----|
|      | sediments. For your chosen characteristic explain how it would effect porosity. [2   | 2] |

| Sedimentary characteristic |
|----------------------------|
| Explanation                |
|                            |

### **QUESTION 2 CONTINUES ON PAGE 6**

© WJEC CBAC Ltd. (1213-01) Turn over.

| (c)         | Using <b>Figure 2b and your knowledge</b> , explain how overuse of an aquifer can lead to surface subsidence. [3] | Examiner<br>only |
|-------------|-------------------------------------------------------------------------------------------------------------------|------------------|
|             |                                                                                                                   |                  |
| •••••       |                                                                                                                   |                  |
| *********** |                                                                                                                   |                  |
|             |                                                                                                                   |                  |
|             |                                                                                                                   | 12               |

#### **SECTION B**

Answer one question from this section on the following pages.

The marks you will be awarded in your essay take into account:
evidence of geological knowledge and understanding;
the use of geological examples;
legibility, accuracy of spelling, punctuation and grammar;
the selection of an appropriate form and style of writing;
the organisation of material, and use of geological vocabulary.

#### EITHER,

- 3. (a) Describe the **factors** that affect the risk of damage to property or loss of life in coastal areas prone to tsunamis. [10]
  - (b) Explain how **two** of the following might be used effectively to minimise the risk from the destructive effects of natural geological hazards.
    - (i) Controlled stress relief along faults
    - (ii) Slope monitoring techniques
    - (iii) Indicators of magma movement

[15]

## OR,

- **4.** (a) Using one or more diagrams, describe how the excavation of a roadway cutting or tunnel in an area of dipping sandstones and shale might lead to slope instability or tunnel collapse. [10]
  - (b) Explain how slopes prone to mass movement might be stabilised. [15]

#### OR.

- **5.** (a) Describe how the different hazards associated with volcanoes **and** earthquakes might give rise to similar types of risk. [10]
  - (b) Explain the geological factors that might be investigated when developing a hazard map for an active island volcano. [15]

| <br> |
|------|
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |

| Examiner only |
|---------------|
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |

## **END OF PAPER**

## Acknowledgements:

Figure 1a – Degg et al. – Teaching Geology, Vol 13, No.4 1988

**Figure 2a** – "Groundwater – our hidden asset" (UK Groundwater Forum)