Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A Level

1211/01

1 hour

GEOLOGY – GL1Foundation Unit

MONDAY, 15 MAY 2017 – MORNING

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	16	
2.	13	
3.	16	
4.	15	
Total	60	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- · the Mineral Data Sheet;
- a protractor.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that marking will take into account the use of examples and the quality of communication used in your answers.

Answer all questions.

1. Figures 1a and 1b give details of the plate tectonic setting of the Tonga Islands in the Pacific Ocean.

Figure 1a

Figure 1b

© WJEC CBAC Ltd. (1211-01) Turn over.

(a)	(i)	Identify the features lal following options.	belled A and B on F	Figures 1a and 1b. C	hoose two from the [2]
	oce	an ridge	ocean trench	volcanic	island arc
	fold	mountains	transform fault	rift valley	(graben)
	A		1	3	
	(ii)	Describe the pattern of			[2]
	(iii)	Explain why earthquak		te tectonic setting.	
(b)	(i)	With reference to Fig A and B .	u re 1b describe ar	d explain the differe	ence in heat flow at [3]
	(ii)	Suggest one possible arrows shown on Figu	cause of plate more 1b.	ovement as indicated	d by the directional [2]

(iii)	With reference to the variation in heatflow on Figure 1b , explain why the Pacplate is subducted beneath the Indo-Australian plate. Note that both plates composed of oceanic lithosphere.	
(iv)	Explain the origin of the andesitic magma beneath location B on Figure 1b .	[3]

16

1211

2. Figure 2a shows the results of sieving a sample of dry loose sand, sand **A**. The sand has a modal grain size of 1.0-2.0 mm. A second sample of dry loose sand, sand **B** is much better sorted than sand **A** and has a modal grain size of $\frac{1}{4}$ to $\frac{1}{2}$ mm which comprises 60% of the sample.

- (a) Complete **Figure 2b** to show the grain size distribution of sand **B**. [3]
- (b) Figure 2c shows sand A.

	7
$\overline{}$	
$\overline{}$	\sim
2	$\overline{}$

(i)	Using the Mineral Data Sheet, state the name of mineral M . [1]	Examiner only
(ii)	Describe the texture of sand A shown in Figure 2c . [3]	
(iii)	Explain the difference in shape between the feldspar grains and the grains of mineral M in sand A shown in Figure 2c . You may wish to use the Mineral Data Sheet.	
(iv)	If sand A was deposited and consolidated into a sedimentary rock, what would be the most appropriate name for this rock? Tick (/) only one box. [1] orthoquartzite breccia arkose conglomerate	
(v)	A student concluded that sand A was deposited in a fluvial environment. Evaluate the evidence from Figure 2c that supports this conclusion. [3]	

13

3. Figure 3a shows a geological map where a granite pluton has intruded into a sequence of sedimentary rocks. **Figure 3b** shows fossil **S** from the shale and **Figure 3c** shows fossil **L** from the limestone.

fossil s

O 2 O 2

Cm Cm

Figure 3b

Figure 3c

(a)	(i)	Name the fossil groups to which fossil S and fossil L belong.	2]
	Foss	sil S Fossil L	
	(ii) 	With reference to Figure 3c describe the depositional environment of the limestor in Figure 3a . Give reasons for your answer.	ne 3]
	(iii)	Explain why fossil S is more useful for the relative dating of rocks than fossil L . [3	3]
(b)	Refe	er to Figure 3a .	
	(i)	Define the term metamorphic aureole. [2	2]
	(ii)	State at which locality C , D , E , F or G in Figure 3a spotted rock is most likely to be found. Give reasons for your answer. Locality Reasons	ое 3]

Examiner only

(c) Draw in **Figure 3d** the texture of the metamorphic rock located at locality **X** in **Figure 3a**. The **mean** crystal size of this rock is 1.5 mm. [3]

16

© WJEC CBAC Ltd.

Figure 4 is a **cross-section** showing the true dip of a sequence of sedimentary rocks exposed in a roadside cutting.

(a)

			rigure 4		
(i)	State the angle labelled X-X		on of dip of the sedime	entary rocks be	elow the boundary [2]
	Angle of dip		° Direction of	dip	
(ii)	State the type Tick () only c		boundary labelled X-	X in Figure 4.	[1]
bedo	ling plane	joint	unconformity	fault	baked margin
(iii)	Indicate with a overturned.	an arrow labell	ed U (U — →) on F	igure 4 one be	ed which has been [1]
(iv)	State two pied overturned.	ces of evidenc	e from Figure 4 that o	confirm that sor	ne of the beds are [2]

•••••					
•	@WIEC CI	DAC 1 td	(1211 01)		Turn over

(b)	There is a major fold structure in the rocks below boundary X–X in Figure 4 .						
	(i)	Draw the position of the fold axis on Figure 4 . [1]				[1]	
	(ii)	Select the three boxes which best describe the main characteristics of the shown in Figure 4 .				f the fold [3]	
		Type of fold			Tick (✓)	only one box	
		anticline		syncline		insufficient information in Figure 4 to decide	
		Strike of axial	plane trace		Tick (✓) (only one box	
		North-South		East-West		Northwest- Southeast	
		Fold symmetr	у		Tick (✓)	only one box	
		asymmetrical		symmetrical		insufficient information on Figure 4 to decide	
(c)		e the type of igne answer.	eous body for	med by the ba	asalt shown	in Figure 4 . Give a ro	eason for [2]
	Туре	of igneous bod	y				
	Reas	son					

	END OF PAPER	15	
	Is a normal fault		
	Fault formed by compressional forces		
	Fault is older than the breccia		
(d)	A student concluded that the fault in Figure 4 is older than the breccia and has been formed by compressional forces resulting in a normal fault. Evaluate these conclusions. [3]	Examine only	r

(1211-01)

BLANK PAGE

BLANK PAGE