Surname

Centre Number

Other Names

GCE A Level

WJEC 1215/02 cbac

III III I IIII III IIII III III III S17-1215-02

GEOLOGY – GL5 Thematic Unit 2 Geology of Natural Resources

THURSDAY, 8 JUNE 2017 - AFTERNOON

ONE of TWO units to be completed in 2 hours

	For Examiner's use only			
	Question	Maximum Mark	Mark Awarded	
Section A	1.	15		
Section B	2.			
	3.	25		
	4.			
	Total	40		

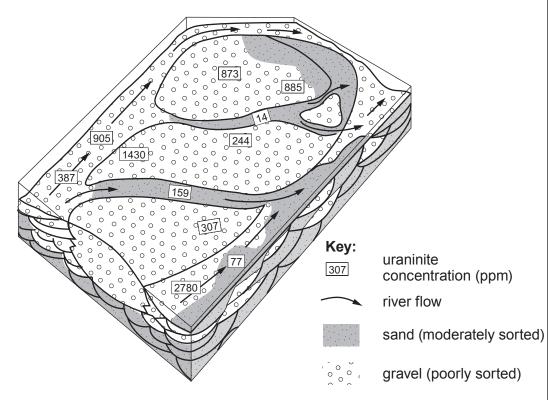
ADDITIONAL MATERIALS

In addition to this and one other examination paper, you will need a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **question 1** in Section A (15 marks) and **one** question from Section B (25 marks).


INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.

SECTION A

2

1. Figure 1a shows the depositional environment of a sedimentary ore deposit showing the concentration of uraninite (an ore of uranium). Table 1a lists some of the properties of uraninite.

chemical compositon	hardness	cleavage	relative density	solubility
UO ₂	5-6	poor	10.63 - 10.95	insoluble

Table 1a

Refer to Figure 1a and Table 1a							
(a)	(i)	State th	State the type of sedimentary ore deposit shown in Figure 1a . [7]				
	(ii)) Complete Table 1b to show the range of concentration of uraninite (in ppm) in the gravels in Figure 1a . [2]					
			maximum	minimum	range		
	sand		159	14	145		
	gravel		•	•	•		

(1215-02)

Examiner only

(iii)	Explain how two properties of uraninite enable it to be concentrated in such an ore deposit. [2]	Examiner only
	1	
	2.	

Turn over.

Figure 1b is a graph showing grain size distribution of a sample of ore-bearing river sediment (sample **X**) with an ore concentration of 1.5%. **Figure 1c** shows the relationship between ore concentration and the coefficient of sorting for samples taken from the same river.

Refer to Figures 1b and 1c. (b) (i) Using Figure 1b: 1. calculate the coefficient of sorting of sample X. Show your working. [3] 2. Plot this result onto Figure 1c. (ii) Describe the relationship between the concentration of the ore mineral and the coefficient of sorting shown in Figure 1c. [2] (iii) Describe the relationship between the concentration of the ore mineral and the coefficient of sorting shown in Figure 1c. [2] (iii) Career 1a, Table 1a and Figure 1c. [3] (c) Refer to Figure 1a, Table 1a and Figure 1c. [3] Explain why uraninite grains are more likely to concentrate in poorly sorted gravels than moderately sorted sands. [3] (d) Suggest a suitable planning control that could be used to limit the adverse effects of one name dervironmental problem that might be caused by the extraction of a geological raw material. environmental problem: [2]			5		
(b) (i) Using Figure 1b: 1. calculate the coefficient of sorting of sample X. Show your working. [3] 1. calculate the coefficient of sorting of sample X. Show your working. [3] 2. Plot this result onto Figure 1c. [1] (ii) Describe the relationship between the concentration of the ore mineral and the coefficient of sorting shown in Figure 1c. [2] (c) Refer to Figure 1a, Table 1a and Figure 1c. [3] (c) Refer to Figure 1a, Table 1a and Figure 1c. [3] (d) Suggest a suitable planning control that could be used to limit the adverse effects of one named environmental problem that might be caused by the extraction of a geological raw material. environmental problem: [2]	Refe	r to Fi	oures 1b and 1c.		
2. Plot this result onto Figure 1c. (i) Describe the relationship between the concentration of the ore mineral and the co- efficient of sorting shown in Figure 1c. [2] (c) Refer to Figure 1a, Table 1a and Figure 1c. Explain why uraninite grains are more likely to concentrate in poorly sorted gravels than moderately sorted sands. [3] (d) Suggest a suitable planning control that could be used to limit the adverse effects of one named environmental problem that might be caused by the extraction of a geological raw material. environmental problem: []			-		
(ii) Describe the relationship between the concentration of the ore mineral and the coefficient of sorting shown in Figure 1c. (c) Refer to Figure 1a, Table 1a and Figure 1c. Explain why uraninite grains are more likely to concentrate in poorly sorted gravels than moderately sorted sands. (d) Suggest a suitable planning control that could be used to limit the adverse effects of one named environmental problem that might be caused by the extraction of a geological raw material. environmental problem:			1. calculate the coefficient of sor	ting of sample X . Show your working. [3]	
 (c) Refer to Figure 1a, Table 1a and Figure 1c. Explain why uraninite grains are more likely to concentrate in poorly sorted gravels than moderately sorted sands. [3] (d) Suggest a suitable planning control that could be used to limit the adverse effects of one named environmental problem that might be caused by the extraction of a geological raw material. environmental problem: 		(ii)	Describe the relationship between the	ne concentration of the ore mineral and the co-	
named environmental problem that might be caused by the extraction of a geological raw material.	(c)	Expl	lain why uraninite grains are more like	ly to concentrate in poorly sorted gravels than	1215
	(d)	nam mate	ed environmental problem that might berial.		
planning control: [2]		envi			
		plan	ning control:	[2]	

SECTION B

Answer one question only.

Write your answer in the remaining pages of this booklet.

- "Economically viable hydrocarbon resources can only be located using geophysical prospecting techniques."
 Evaluate this statement.
- 3. (a) Explain how igneous processes can form economically valuable mineral resources.
 - (b) Evaluate the significance of Bowen's Reaction Series in forming ore minerals. [25]
- 4. (a) Describe the processes of formation of:
 - 1. china clay

and

- 2. fluorite **or** barite (baryte)
- (b) Evaluate the application and limitations of prospecting using mapping and satellite remote sensing techniques. [25]

Examiner only

© W.IFC	CBAC Ltd.
e mileo	OD/IO LIU.

(121	5-02)
------	-------

	Examiner only
·····	
·····	

	Examiner only
· ·····	

END OF PAPER

Examiner only

BLANK PAGE

Acknowledgements:

Question1: Burton J.P & Fralick P. Economic Geology Vol. 98, 2003, pp 985-1001