Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4161/01

ELECTRONICS

UNIT E1: Paper replacement test

TUESDAY, 13 JUNE 2017 - AFTERNOON

1 hour

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	6			
2.	4			
3.	4			
4.	2			
5.	3			
6.	3			
7.	2			
8.	4			
9.	5			
10.	2			
11.	3			
12.	2			
13.	3			
14.	2			
15.	3			
16.	3			
17.	5			
18.	4			
Total	60			

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

INFORMATION SHEET FOR UNIT E1

This information may be of use in answering the questions.

1. Resistor Colour Codes

GREEN 5
BLUE 6
VIOLET 7
GREY 8
WHITE 9

The fourth band colour gives the tolerance as follows:

GOLD ± 5%

SILVER ± 10%

2. Preferred Values for Resistors - E24 series

10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91.

- 3. Resistance = $\frac{\text{voltage}}{\text{current}}$; $R = \frac{V}{I}$.
- **4. Effective resistance,** R, of two resistors R_1 and R_2 in series is given by $R = R_1 + R_2$.
- **5.** Effective resistance, R, of two resistors R_1 and R_2 in parallel is given by $R = \frac{R_1 R_2}{R_1 + R_2}$.

6. Voltage Divider

- 7. Power = voltage × current; $P = VI = I^2R = \frac{V^2}{R}$.
- 8. LED The forward voltage drop across a LED is 2V.
- 9. NPN Transistors (i) Current gain = $\frac{\text{Collector current}}{\text{Base current}}$; $h_{\text{FE}} = \frac{I_{C}}{I_{B}}$.
 - (ii) The forward voltage drop across the base emitter junction is 0.7 V.

[3]

[3]

Answer all questions.

1.	(a)	Here	is a	list of	electronic	components
••	(4)	1 1010	io a	HOL OI	CICCUIOTIIC	COMPONICATION

Resistor Lamp Push-to-make switch Thyri

Push-to-break switch LED Buzzer

Complete each box with the correct name for **each** component.

	
\circ 1 \circ	
 0	
<u> </u>	

(b) The following is a list of different electronic sub-systems.

NOT gate Latch unit Sound sensing unit Delay unit Pulse generator

Magnetic switch unit Motor unit Lamp unit Comparator

Write each sub-system into the correct column in the table below.

_

4161 010003

2. Study the following circuit.

Select the correct answers to the following questions.

0	1	2	3	4	5	6	7	8	9	10	11	12	13

- (a) What is the value of V_2 ? [1]
- (c) What is the value of V_3 ? [1]
- (d) What is the value of I_4 ? mA

3. Here is the pinout for a logic gate IC.

On the diagram write:

(a) the letter 'Q' on all output pins;

[1]

(b) the symbol '+' on the positive supply pin;

[1]

(c) the number '9' on pin 9.

[1]

4161 010005

(d) What type of logic gate is shown in the diagram?

[1]

[2]

4. Draw the correct logic gate to match the name in the table below.

Logic gate name	Symbol
NOR gate	
NOT gate	

Turn over.

5. (a) The following diagram shows the circuit symbol for a transistor. (Tick (✓) the correctly labelled symbol.)

[1]

[1]

(b) The following diagram shows the circuit symbol for a MOSFET.(Tick (J) the correctly labelled symbol.)

(c) The following diagram shows the circuit symbol for a thyristor.(Tick (✓) the correctly labelled symbol.) [1]

Write down the correct colour of bands 1, 2 and 3 present on this resistor.

[3]

4161 010007

Band 1

Band 2

Band 3

7. The diagram shows a motor.

(a) Select the correct equation to calculate the power used in the motor in watts (W).(Tick (✓) the correct answer.)

 $P = \frac{6}{15}$

 $P = \frac{15}{6}$

 $P = 6 \times 1500$

 $P = 6 \times 15$

 $P = \frac{6}{1.5}$

 $P = \frac{15000}{6}$

(b) Calculate the power used in the motor.

[1]

[1]

..... W

8. Here is an analogue sensing circuit at room temperature.

(a) Circle the name of the component labelled X.

[1]

[1]

LDR Resistor

Thermistor

Variable resistor

(b) $V_{OUT} = 3 \text{ V}$. Circle the correct voltage across the component X. [1]

0V 1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V 12V

(c) (i) What would happen to the resistance of component Y if an ice cube was placed on top of it? (Tick (\checkmark) the correct answer.) [1]

The resistance of component Y would increase

The resistance of component Y would stay the same

The resistance of component Y would decrease

The resistance of component Y will halve

(ii) What effect would this have on the output voltage V_{OUT} ? (Tick (\checkmark) the correct answer.)

V_{OUT} would increase

V_{OUT} would decrease

 $ule{V_{
m OUT}}$ would stay the same

V_{OUT} would become 0 V

4161

9. A luxury car has heated front seats for both the driver and front passenger.

The driver's seat heater will only operate if:

- the driver is sitting on the driver's seat
- the engine ignition is switched on
- the outside temperature is below a set temperature.

The passenger's seat heater will only operate if:

- there is someone sitting in the driver's seat
- the engine ignition is switched on
- the outside temperature is below a set temperature
- there is someone sitting in the passenger seat.

A number of sensing sub-systems are available for use, with the following specifications:

- a light sensor that outputs a Logic 1 when in daylight and Logic 0 when it is dark
- a temperature sensor that outputs a Logic 1 when it is cold and Logic 0 when it is warm
- a pressure sensor that outputs Logic 0 when it is not under pressure and Logic 1 when it is under pressure
- a moisture sensor that outputs a Logic 0 when wet and Logic 1 when dry.

Complete the block diagram for the car seat heating system using the information about each type of sensor above and the other sub-systems in the list below: [5]

Thyristor OR gate Inverter Pressure sensing unit

Temperature sensing unit Moisture sensing unit Switch unit

Transducer driver NOT gate Light sensing unit AND gate

© WJEC CBAC Ltd. (4161-01) Turn over.

[1]

10. (a) Circle the logic gate that has the following truth table.

Inp	Output	
Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

AND gate NAND gate NOR gate OR gate

(b) Circle the logic gate that outputs a logic 1 signal **only** when both inputs are at logic 1.

[1]

AND gate NAND gate NOR gate OR gate

11. A logic system has the following truth table.

Inp	uts	Outputs		
Α	В	Х	Y	Q
0	0	0	1	1
0	1	0	0	0
1	0	1	1	1
1	1	1	0	1

Draw the correct logic gates / connections to the following circuit to produce the truth table given above. [3]

© WJEC CBAC Ltd.

(4161-01)

Examiner only

12. The logic circuit below contains some NAND gates that are redundant. Circle all the redundant NAND gates.

[2]

13. The diagrams below show three different combinations of resistors.

Calculate the effective resistance of each combination in $k\Omega$.

[3]

© WJEC CBAC Ltd. (4161-01) Turn over.

14. Select the correct truth table that represents the function described by each Boolean equation. (Tick (\checkmark) the correct answer.)

(a) $Q = A.\overline{B}$

[1]

		ı
Inp	Output	
Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

	0
	0
٦	1
	1

Output

Q

1

0

1

0

Inp	uts	Output
Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

Inputs Outpu		
Α	В	Q
0	0	0
0	1	0
1	0	1
1	1	0

Inputs

A

В

0

1

0

1

(b)
$$Q = \overline{A} + B$$

[1]

Inputs		Output
Α	В	Q
0	0	0
0	1	1
1	0	0
1	1	1

ı			
ı			
ı			
ı			

	_	
	- 1	

inputs		Output
Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Inputs		Output
Α	В	Q
0	0	1
0	1	1
1	0	0
1	1	1

Inp	uts	Output
Α	В	Q
0	0	1
0	1	0
1	0	1
1	1	0

Examiner only

15. The following show the NAND equivalent circuits for a number of standard gates.

e NAND equivalent circuit to	rcuit to match the standard gate given below. [3]	
Standard gate	NAND equivalent circuit	
NOR gate		
AND gate		
NOT gate		

- **16.** The following circuit is **part of** a larger electronic system.
 - (a) Input A of the logic system needs to be at logic 1 when switch S_1 is pressed. Draw the correct components in boxes W and X.

[1]

[1]

[1]	(b) What is the purpose of the component labelled 'Y' in the circuit above?

(c) What combination(s) of switch settings produce a logic 1 output Q from the circuit. (Tick (✓) all that apply.)

S₁ open & S₂ open

S₁ closed & S₂ open

S₁ open & S₂ closed

S₁ closed & S₂ closed

BLANK PAGE

© WJEC CBAC Ltd. (4161-01) Turn over.

17. The following **incomplete** circuit diagram shows a comparator used to switch on a greenhouse heater when the temperature gets too cold.

(a) Select the correct equation to calculate the voltage V_{REF} . [1]

$V_{\text{per}} = \frac{9}{12} \times 12$	$V_{\text{non}} = \frac{6}{12} \times 12$
	'REF 18+9^12

$$V_{REF} = \frac{6}{6+18} \times 12$$
 $V_{REF} = \frac{18}{6+18} \times 12$

(b) Calculate the voltage $V_{\rm REF}$ at the inverting input. [1]

(c) Complete the circuit diagram below to make a non-latching output circuit for the comparator using the components shown below. [2]

(d) What modification could be made to the circuit so that the temperature that the heater switches on could be changed? [1]

18. A high power LED is to be used as a power on indicator as shown below.

(a) What is the voltage drop across the resistor R?

[1]

.....V

(b) Select the correct equation to calculate the ideal resistance of resistor R (in $k\Omega$) to provide a current of 25 mA through the LED.

(Tick (✓) the correct answer.)

[1]

$$R = 9 \times 25$$

 $R = \frac{2}{25}$

$$R = \frac{7}{25}$$

 $R = 7 \times 25$

$$R = 9 \times 2$$

 $R = \frac{9}{25}$

$$R = \frac{9}{2}$$

 $R = 9 \times 23$

- (c) What is the ideal resistance of resistor R? $k\Omega$ [1]
- (d) Use the E24 resistor series on the information sheet to select the preferred value for resistor R in ohms to ensure that the current through the LED is just less than 25 mA.

[1]

.....Ω

END OF PAPER

BLANK PAGE